ﻻ يوجد ملخص باللغة العربية
Refraction and diffraction of waves in natural crystals and artificial crystals formed by anisotropically scattering centers are considered. A detailed study of the electromagnetic wave refraction in a two-dimensional photonic crystal formed by parallel threads is given by way of example. The expression is derived for the effective amplitude of wave scattering by a thread (in a crystal) for the case when scattering by a single thread in a vacuum is anisotropic. It is established that for a wave with orthogonal polarization, unlike a wave with parallel polarization, the index of refraction in crystals built from metallic threads can be greater than unity, and Vavilov-Chrernkov radiation becomes possible in them. The set of equations describing the dynamical diffraction of waves in crystals is derived for the case when scattering by a single center in a vacuum is anisotropic. Because a most general approach is applied to the description of the scattering process, the results thus obtained are valid for a wide range of cases without being restricted to either electromagnetic waves or crystals built from threads.
We clarify theoretically that the topological ring-cavity (TRC) modes propagating along the interface between two honeycomb-type photonic crystals distinct in topology can be exploited for achieving stable single-mode lasing, with the maximal intensi
The review is devoted to a discussion of new (and often unexpected) aspects of the old problem of elastic light scattering by small metal particles, whose size is comparable to or smaller than the thickness of the skin layer. The main focus is put on
The model of nonlinear interaction of proper waves of photonic crystal with plane acoustic wave was developed. The formulation of the model is reduced to the eigenvalue problem, which can be solved by computer simulations. By means of the formulae gi
We describe a smooth transition from (fully ordered) photonic crystal to (fully disordered) photonic glass that enables us to make an accurate measurement of the scattering mean free path in nanostructured media and, in turn, establishes the dominant
We experimentally demonstrate how to solve the phase problem of diffraction using multi-wave interference with standard diffraction experimental setups without the need for taking any auxiliary data. In particular, we show that the phases of the Four