ﻻ يوجد ملخص باللغة العربية
We present FLAMES/GIRAFFE integral field spectroscopy of 30 galaxies in the massive cluster Abell 1689 at z = 0.183. Conducting an analysis similar to that of ATLAS3D, we extend the baseline of the kinematic morphology-density relation by an order of magnitude in projected density and show that it is possible to use existing instruments to identify slow and fast rotators beyond the local Universe. We find 4.5 +- 1.0 slow rotators with a distribution in magnitude similar to those in the Virgo cluster. The overall slow rotator fraction of our Abell 1689 sample is 0.15 +- 0.03, the same as in Virgo using our selection criteria. This suggests that the fraction of slow rotators in a cluster is not strongly dependent on its density. However, within Abell 1689, we find that the fraction of slow rotators increases towards the centre, as was also found in the Virgo cluster.
We present integral-field spectroscopy of 27 galaxies in the Coma cluster observed with the Oxford SWIFT spectrograph, exploring the kinematic morphology-density relationship in a cluster environment richer and denser than any in the ATLAS3D survey.
{abridged} We present imaging and spectroscopy of Abell 1689 (z=0.183) from GEMINI/GMOS-N and HST/ACS. We measure integrated photometry from the GMOS g and r images (for 531 galaxies) and surface photometry from the HST F625W image (for 43 galaxies)
The properties of Ultra Compact Dwarf (UCD) galaxy candidates in Abell 1689 (z=0.183) are investigated, based on deep high resolution ACS images. A UCD candidate has to be unresolved, have i<28 (M_V<-11.5) mag and satisfy color limits derived from Ba
We have measured the strength of the UV upturn for red sequence galaxies in the Abell~1689 cluster at $z=0.18$, reaching to or below the $L^*$ level and therefore probing the general evolution of the upturn phenomenon. We find that the range of UV up
We study the formation of early-type galaxies through mergers with a sample of 70 high-resolution (softening length < 60 pc and 12*10^6 particles) numerical simulations of binary mergers of disc galaxies and 16 simulations of ETG remergers. These sim