ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of Two-Dimensional Quantum Critical Behavior in the Superfluid Density of Deeply Underdoped Bi2Sr2CaCu2O8+x

114   0   0.0 ( 0 )
 نشر من قبل Jie Yong
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Evidence of two-dimensional (2D) quantum critical fluctuations is observed in the superfluid density ns(T) propto $lambda$ -2(T) of deeply underdoped Bi2Sr2CaCu2O8+x (Bi-2212) films, indicating that quantum fluctuations play a dominant role in underdoped cuprates in general. 2D fluctuations are expressed by the linear scaling, Tc propto ns(0). 2D scaling in Bi-2212 contrasts with 3D scaling seen in the much less anisotropic YBa2Cu3O7-x. Quantum critical fluctuations could also account for the absence of thermal critical behavior in lambda^{-2}(T) of strongly underdoped Bi-2212 samples, Tc < 48 K.



قيم البحث

اقرأ أيضاً

When a second-order magnetic phase transition is tuned to zero temperature by a non-thermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these `quantum critical superc onductors it has been widely reported that the normal-state properties above the superconducting transition temperature $T_c$ often exhibit anomalous non-Fermi liquid behaviors and enhanced electron correlations. However, the effect of these strong critical fluctuations on the superconducting condensate below $T_c$ is less well established. Here we report measurements of the magnetic penetration depth in heavy-fermion, iron-pnictide, and organic superconductors located close to antiferromagnetic quantum critical points showing that the superfluid density in these nodal superconductors universally exhibit, unlike the expected $T$-linear dependence, an anomalous 3/2 power-law temperature dependence over a wide temperature range. We propose that this non-integer power-law can be explained if a strong renormalization of effective Fermi velocity due to quantum fluctuations occurs only for momenta $bm{k}$ close to the nodes in the superconducting energy gap $Delta(bm{k})$. We suggest that such `nodal criticality may have an impact on low-energy properties of quantum critical superconductors.
155 - Jie Yong , M. Hinton , A. McCray 2011
Due to their proximity to an antiferromagnetic phase and to the mysterious pseudogap, underdoped cuprates have attracted great interest in the high Tc community for many years. A central issue concerns the role of quantum and thermal fluctuations of the phase of the superconducting order parameter. The evolution of superfluid density ns with temperature and doping is a powerful probe of this physics. Here, we report superfluid density measurements on underdoped Bi2Sr2CaCu2O8+x (Bi-2212) films at much lower dopings than have been achieved previously, and with excellent control on doping level - Tc ranges from Tc,min ~ 6K to Tc,max ~ 80K in steps of about 5K. Most famous studies on Bi-2212 like angle-resolved photoemission and scanning probe microscopy are surface-sensitive while superfluid density measurements are bulk-sensitive. We find that strong two-dimensional quantum fluctuations are evident in the observed linear scaling of Tc with ns(0) when Tc is below about 45 K, which contrasts with three-dimensional quantum fluctuations evident in the square root scaling, Tc $propto sqrt$ns(0), seen in the much less anisotropic cuprate, YBa2Cu3O7 (YBCO). On the other hand, consistent with YBCO, ns(T) in severely underdoped Bi-2212 loses its strong downward curvature near Tc, becoming quasi-linear without any obvious critical behavior near Tc. We argue that the quasi-linear T dependence arises from thermal phase fluctuations, although the current theory needs modification in order to understand some features.
166 - T. Shen , J. Jiang , A. Yamamoto 2009
Bi2Sr2CaCu2O8+x is the only cuprate superconductor that can be made into a round-wire conductor form with a high enough critical current density Jc for applications. Here we show that the Jc(5 T,4.2 K) of such Ag-sheathed filamentary wires can be dou bled to more than 1.4x10^5 A/cm^2 by low temperature oxygenation. Careful analysis shows that the improved performance is associated with a 12 K reduction in transition temperature Tc to 80 K and a significant enhancement in intergranular connectivity. In spite of the macroscopically untextured nature of the wire, overdoping is highly effective in producing high Jc values.
We investigate the nature of the SDW (Spin Density Wave) transition in the underdoped regime of an iron-based high Tc superconductor Ba(Fe1-xCox)2As2 by 75As NMR, with primary focus on a composition with x = 0.02 (T_SDW = 99 K).We demonstrate that cr itical slowing down toward the three dimensional SDW transition sets in at the tetragonal to orthorhombic structural phase transition, Ts = 105 K, suggesting strong interplay between structural distortion and spin correlations. In the critical regime between Ts and T_SDW, the dynamical structure factor of electron spins S(q,Wn) measured with the longitudinal NMR relaxation rate 1/T1 exhibits a divergent behavior obeying a power law, 1/T1~S(q, Wn)~(T/T_SDW-1)^a with the critical exponent a ~ 0.33.
We report and analyze in-plane penetration depth measurements in YBa2Cu3O7-x taken close to the critical temperature Tc. In underdoped YBa2Cu3O6:59 we find consistent evidence for charged critical behavior. Noting that the effective dimensionless cha rge scales as 1/sqrt(Tc), this new critical behavior should be generically observable in suitably underdoped cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا