ﻻ يوجد ملخص باللغة العربية
We revisit the problem of the split main sequence (MS) of the globular cluster omega Centauri, and report the results of two-epoch Hubble Space Telescope observations of an outer field, for which proper motions give us a pure sample of cluster members, and an improved separation of the two branches of the main sequence. Using a new set of stellar models covering a grid of values of helium and metallicity, we find that the best possible estimate of the helium abundance of the bluer branch of the MS is Y = 0.39 +/- 0.02. For the cluster center we apply new techniques to old observations: we use indices of photometric quality to select a high-quality sample of stars, which we also correct for differential reddening. We then superpose the color-magnitude diagram of the outer field on that of the cluster center, and suggest a connection of the bluer branch of the MS with one of the more prominent among the many sequences in the subgiant region. We also report a group of undoubted cluster members that are well to the red of the lower MS.
We present a sample of 17 newly discovered ultracool dwarf candidates later than ~M8, drawn from 231.90 arcmin2 of {it Hubble Space Telescope} Wide Field Camera 3 infrared imaging. By comparing the observed number counts for 17.5<J_125<25.5 AB mag to
The globular cluster $omega$ Centauri (NGC 5139) is a puzzling stellar system harboring several distinct stellar populations whose origin still represents a unique astrophysical challenge. Current scenarios range from primordial chemical inhomogeneit
The Cosmic Evolution Survey (COSMOS) was initiated with an extensive allocation (590 orbits in Cycles 12-13) using the Hubble Space Telescope (HST) for high resolution imaging. Here we review the characteristics of the HST imaging with the Advanced
Recent work, based on data from the Hubble Space Telescope (HST) UV Legacy Survey of Galactic Globular Clusters (GCs), has revealed that all the analyzed clusters host two groups of first- (1G) and second-generation (2G) stars. In most GCs, both 1G a
The helium-enriched (He-enriched) metal-rich red giants of Omega Centauri, discovered by Hema and Pandey using the low-resolution spectra from the Vainu Bappu Telescope (VBT) and confirmed by the analyses of the high-resolution spectra obtained from