ترغب بنشر مسار تعليمي؟ اضغط هنا

QCD Corrections to Neutron Electric Dipole Moment from Dimension-six Four-Quark Operators

444   0   0.0 ( 0 )
 نشر من قبل Koji Tsumura
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, the renormalization-group equations for the (flavor-conserving) CP-violating interaction are derived up to the dimension six, including all the four-quark operators, at one-loop level. We apply them to the models with the neutral scalar boson or the color-octet scalar boson which have CP-violating Yukawa interactions with quarks, and discuss the neutron electric dipole moment in these models.



قيم البحث

اقرأ أيضاً

The connection between a regularization-independent symmetric momentum substraction (RI-$tilde{rm S}$MOM) and the $overline{rm MS}$ scheme for the quark chromo EDM operators is discussed. A method for evaluating the neutron EDM from quark chromoEDM i s described. A preliminary study of the signal in the matrix element using clover quarks on a highly improved staggered quark (HISQ) ensemble is shown.
We compute the electric dipole moment of nucleons in the large $N_c$ QCD model by Witten, Sakai and Sugimoto with $N_f=2$ degenerate massive flavors. Baryons in the model are instantonic solitons of an effective five-dimensional action describing the whole tower of mesonic fields. We find that the dipole electromagnetic form factor of the nucleons, induced by a finite topological $theta$ angle, exhibits complete vector meson dominance. We are able to evaluate the contribution of each vector meson to the final result - a small number of modes are relevant to obtain an accurate estimate. Extrapolating the model parameters to real QCD data, the neutron electric dipole moment is evaluated to be $d_n = 1.8 cdot 10^{-16}, theta;ecdot mathrm{cm}$. The electric dipole moment of the proton is exactly the opposite.
We compute the electric dipole moment (EDM) of the deuteron in the holographic QCD model of Witten-Sakai-Sugimoto. Previously, the leading contribution to the EDM of nucleons was computed, finding opposite values for the proton and the neutron which then cancel each other in the deuteron state. Here we compute the next-to-leading order contribution which provides a splitting between their absolute value. At large $N_{rm c}$ and large t Hooft coupling $lambda$, nuclei are bound states of almost isolated nucleons. In particular, we find that in this limit the deuteron EDM is given by the splitting between proton and neutron EDMs. Our estimate for the deuteron EDM extrapolated to the physical values of $N_{rm c}$, $lambda$, $M_{rm KK}$ and $m_q$ is $mathcal{D}_D = -0.92times 10^{-16} theta e cdot {cm}$. This is consistent, in sign and magnitude, with results found previously in the literature and obtained using completely different methods.
Considering the CP violating phases, we analyze the neutron electric dipole moment (EDM) in a CP violating supersymmetric extension of the standard model where baryon and lepton numbers are local gauge symmetries(BLMSSM). The contributions from the o ne loop diagrams and the Weinberg operators are taken into account. Adopting some assumptions on the relevant parameter space, we give the numerical results analysis. The numerical results for neutron EDM can reach $1.05times 10^{-25}(e.cm)$, which is about the experimental upper limit.
We propose a novel approach in a search for the neutron electric dipole moment (EDM) by taking advantage of signal amplification in a weak measurement, known as weak value amplification. Considering an analogy to the weak measurement that can measure the spin magnetic moment interaction, we examine an experimental setup with a polarized neutron beam through an external electric field with spatial gradient, where the signal is sensitive to the EDM interaction. In particular, a dedicated analysis of effects from impurities in pre- and post-selections is performed. We show that the weak value amplification occurs where the signal is enhanced by up to two orders of magnitude, and demonstrate a potential sensitivity of the proposed setup to the neutron EDM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا