ترغب بنشر مسار تعليمي؟ اضغط هنا

A new soft X-ray spectral model for polars with an application to AM Herculis

204   0   0.0 ( 0 )
 نشر من قبل Klaus Reinsch
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple heuristic model for the time-averaged soft X-ray temperature distribution in the accretion spot on the white dwarf in polars. The model is based on the analysis of the Chandra LETG spectrum of the prototype polar AM Her and involves an exponential distribution of the emitting area vs. blackbody temperature a(T) = a0 exp(-T/T0). With one free parameter besides the normalization, it is mathematically as simple as the single blackbody, but is physically more plausible and fits the soft X-ray and far-ultraviolet spectral fluxes much better. The model yields more reliable values of the wavelength-integrated flux of the soft X-ray component and the implied accretion rate than reported previously.



قيم البحث

اقرأ أيضاً

Polars (AM Herculis binaries) are a prominent class of bright soft X-ray sources, many of which were discovered with ROSAT. We present a homogenous analysis of all the pointed ROSAT PSPC observations of polars subdivided into two papers that discuss the prototype polar AM Her in detail and summarize the class properties of all other polars. We derive the high-state soft X-ray flux and short-term spectral variability of AM Her using a new detector response matrix and a confirmed flux calibration of the ROSAT PSPC below 0.28 keV. The best-fit mean single-blackbody temperature and integrated bright-phase energy flux of AM Her in its April 1991 high state are 27.2 +/- 1.0 eV and (2.6 +/- 0.6) x 10^-9 erg cm^-2s^-1, respectively. The total blackbody flux of a multi-temperature model that fits both the soft X-ray and the fluctuating far-ultraviolet components is Fbb = (4.5 +/- 1.5) x 10^-9 erg cm^-2s^-1. The total accretion luminosity at a distance of 80 pc, Lbb = (2.1 +/- 0.7) x 10^33 erg s-1, implies an accretion rate of Mdot = (2.4 +/- 0.8) x 10^-10 Msun yr^-1 for an 0.78 Msun white dwarf. The soft X-ray flux displays significant variability on time scales down to 200 ms. Correlated spectral and count-rate variations are seen in flares on time scales down to 1 s, demonstrating the heating and cooling associated with individual accretion events. Our spectral and temporal analysis provides direct evidence for the blobby accretion model and suggests a connection between the soft X-ray and the fluctuating far-ultraviolet components.
In intermediate polars (IPs), the intrinsic thermal emissions from white dwarfs (WDs) have typically been studied. Few reports have analyzed X-ray reflections from WDs. We recently developed an elaborate IP-reflection spectral model. Herein, we repor t the first application of a reflection model with an IP thermal model to the spectra of the brightest typical IP V1223 Sagittarii observed by the Suzaku and NuSTAR satellites. The model reasonably reproduces the spectra within the range of 5-78 keV and estimates the WD mass as 0.92$pm$0.02 $M_odot$. The WD mass estimated by the proposed model is consistent with that measured using an active galactic nuclei reflection model and a partial covering absorption model. However, the choice of incorrect parameter values, such as an unsuitable fitting energy band and an incorrect metal abundance, was found to introduce systematic errors (e.g., $<sim$ 0.2 $M_odot$ in the WD mass) in the WD mass measurement. Our spin phase-resolved analysis resulted in discoveries regarding the modulations of the equivalent width of the fluorescent iron K$_{alpha}$ line and the angle between the post-shock accretion column and the line-of-sight (viewing angle). The viewing angle anti-correlates approximately with the X-ray flux and has average and semi-amplitude values of 55$^circ$ and 7$^circ$, respectively, which points toward two WD spin axis angles from the line-of-sight of 55$^circ$ and 7$^circ$, respectively. Both estimated spin axis angles are different from the reported system inclination of 24$^circ$.
High-energy data of accreting white dwarfs give access to the regime of the primary accretion-induced energy release and the different proposed accretion scenarios. We perform XMM-Newton observations of polars selected due to their ROSAT hardness rat ios close to -1.0 and model the emission processes in accretion column and accretion region. Our models consider the multi-temperature structure of the emission regions and are mainly determined by mass-flow density, magnetic field strength, and white-dwarf mass. To describe the full spectral energy distribution from infrared to X-rays in a physically consistent way, we include the stellar contributions and establish composite models, which will also be of relevance for future X-ray missions. We confirm the X-ray soft nature of three polars.
We analyze the first X-ray observations with XMM-Newton of RXS J070407.9+262501 and 1RXS 180340.0+401214, in order to characterize their broad-band temporal and spectral properties, also in the UV/optical domain, and to confirm them as Intermediate P olars. For both objects, we performed a timing analysis of the X-ray and UV/optical light curves to detect the white dwarf spin pulsations and study their energy dependence. For 1RXS 180340.0+401214 we also analyzed optical spectroscopic data to determine the orbital period. X-ray spectra were analyzed in the 0.2-10.0 keV range to characterize the emission properties of both sources. We find that the X-ray light curves of both systems are energy dependent and are dominated, below 3-5 keV, by strong pulsations at the white dwarf rotational periods (480 s for 1RXS J070407.9+262501 and 1520.5 s for 1RXS 180340.0+401214). In 1RXS 180340.0+401214 we also detect an X-ray beat variability at 1697 s which, together with our new optical spectroscopy, favours an orbital period of 4.4 hr that is longer than previously estimated. Both systems show complex spectra with a hard (up to 40 keV) optically thin and a soft (85-100 eV) optically thick components heavily absorbed by material partially covering the X-ray sources. Our observations confirm the two systems as Intermediate Polars and also add them as new members of the growing group of soft systems which show the presence of a soft X-ray blackbody component. Differences in the temperatures of the blackbodies are qualitatively explained in terms of reprocessing over different sizes of the white dwarf spot. We suggest that systems showing cooler soft X-ray blackbody components also possess white dwarfs irradiated by cyclotron radiation.
273 - Y.Terada 2010
The X-ray observation of AM Her in a very low state was performed with {it Suzaku} in October 2008. One flare event with a time scale of $sim$ 3700 sec was detected at the X-ray luminosity of $6.0 times 10^{29} {rm ~erg ~sec}^{-1}$ in the 0.5 -- 10 k eV band assuming at a distance of 91 pc. The X-ray spectrum is represented by a thermal plasma emission model with a temperature of $8.67_{-1.14}^{+1.31}$ keV. During the quiescence out of the flare interval, {it Suzaku} also detected significant X-rays at a luminosity of $1.7 times 10^{29} {rm ~erg ~sec}^{-1}$ in the 0.5 -- 10 keV band, showing a clear spin modulation at a period of 0.1289273(2) days at BJD 2454771.581. The X-ray spectra in the quiescence were represented by a MEKAL + Power Law (PL) model or a single CEMEKL model, which are also supported by phase-resolved analyses. A correlation between the temperature and the volume emission measure was found together with historical X-ray measurements of AM Her in various states. In order to account for a possible non-thermal emission from AM Her, particle acceleration mechanisms in the AM Her system are also discussed, including a new proposal of a shock acceleration process on the top of the accretion column.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا