ترغب بنشر مسار تعليمي؟ اضغط هنا

Wilson loops to 20th order numerical stochastic perturbation theory

101   0   0.0 ( 0 )
 نشر من قبل Arwed Schiller
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate Wilson loops of various sizes up to 20 loops in SU(3) pure lattice gauge theory at different lattice sizes for Wilson gauge action using the technique of numerical stochastic perturbation theory. This allows us to investigate the perturbative series for various Wilson loops at high loop orders. We observe differences in the behavior of those series as function of the loop order. Up to $n=20$ we do not find evidence for the factorial growth of the expansion coefficients often assumed to characterize an asymptotic series. Based on the actually observed behavior we sum the series in a model parametrized by hypergeometric functions. Alternatively we estimate the total series in boosted perturbation theory using information from the first 14 loops. We introduce generalized ratios of Wilson loops of different sizes. Together with the corresponding Wilson loops from standard Monte Carlo measurements they enable us to assess their non-perturbative parts.



قيم البحث

اقرأ أيضاً

We calculate Wilson loops of various sizes up to loop order $n=20$ for lattice sizes of $L^4 (L=4, 6, 8, 12)$ using the technique of Numerical Stochastic Perturbation Theory in quenched QCD. This allows to investigate the behaviour of the perturbativ e series at high orders. We discuss three models to estimate the perturbative series: a renormalon inspired fit, a heuristic fit based on an assumed power-law singularity and boosted perturbation theory. We have found differences in the behavior of the perturbative series for smaller and larger Wilson loops at moderate $n$. A factorial growth of the coefficients could not be confirmed up to $n=20$. From Monte Carlo measured plaquette data and our perturbative result we estimate a value of the gluon condensate $<frac{alpha}{pi}GG>$.
We calculate perturbative Wilson loops of various sizes up to loop order $n=20$ at different lattice sizes for pure plaquette and tree-level improved Symanzik gauge theories using the technique of Numerical Stochastic Perturbation Theory. This allows us to investigate the behavior of the perturbative series at high orders. We observe differences in the behavior of perturbative coefficients as a function of the loop order. Up to $n=20$ we do not see evidence for the often assumed factorial growth of the coefficients. Based on the observed behavior we sum this series in a model with hypergeometric functions. Alternatively we estimate the series in boosted perturbation theory. Subtracting the estimated perturbative series for the average plaquette from the non-perturbative Monte Carlo result we estimate the gluon condensate.
We complete our high-accuracy studies of the lattice ghost propagator in Landau gauge in Numerical Stochastic Perturbation Theory up to three loops. We present a systematic strategy which allows to extract with sufficient precision the non-logarithmi c parts of logarithmically divergent quantities as a function of the propagator momentum squared in the infinite-volume and $ato 0$ limits. We find accurate coincidence with the one-loop result for the ghost self-energy known from standard Lattice Perturbation Theory and improve our previous estimate for the two-loop constant contribution to the ghost self-energy in Landau gauge. Our results for the perturbative ghost propagator are compared with Monte Carlo measurements of the ghost propagator performed by the Berlin Humboldt university group which has used the exponential relation between potentials and gauge links.
We present the results of an exploratory study of the numerical stochastic perturbation theory (NSPT) applied to the four dimensional twisted Eguchi-Kawai (TEK) model. We employ a Kramers type algorithm based on the Generalized Hybrid Molecular Dynam ics (GHMD) algorithm. We have computed the perturbative expansion of square Wilson loops up to $O(g^8)$. The results of the first two coefficients (up to $O(g^4)$) have a high precision and match well with the exact values. The next two coefficients can be determined and even extrapolated to large $N$, where they should coincide with the corresponding coefficients for ordinary Yang-Mills theory on an infinite lattice. Our analysis shows the behaviour of the probability distribution for each coefficient tending to Gaussian for larger $N$. The results allow us to establish the requirements to extend this analysis to much higher order.
In this contribution we present an exploratory study of several novel methods for numerical stochastic perturbation theory. For the investigation we consider observables defined through the gradient flow in the simple {phi}^4 theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا