ترغب بنشر مسار تعليمي؟ اضغط هنا

Menger algebras of $n$-place functions

88   0   0.0 ( 0 )
 نشر من قبل Wieslaw Dudek
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is a survey of the main results on abstract characterizations of algebras of $n$-place functions obtained in the last 40 years. A special attention is paid to those algebras of $n$-place functions which are strongly connected with groups and semigroups, and to algebras of functions closed with respect natural relations defined on their domains.



قيم البحث

اقرأ أيضاً

Algebraic properties of $n$-place opening operations on a fixed set are described. Conditions under which a Menger algebra of rank $n$ can be represented by $n$-place opening operations are found.
We discuss some types of congruences on Menger algebras of rank $n$, which are generalizations of the principal left and right congruences on semigroups. We also study congruences admitting various types of cancellations and describe their relationship with strong subsets.
262 - Ming Chen , Jiefeng Liu , Yao Ma 2021
Based on the differential graded Lie algebra controlling deformations of an $n$-Lie algebra with a representation (called an n-LieRep pair), we construct a Lie n-algebra, whose Maurer-Cartan elements characterize relative Rota-Baxter operators on n-L ieRep pairs. The notion of an n-pre-Lie algebra is introduced, which is the underlying algebraic structure of the relative Rota-Baxter operator. We give the cohomology of relative Rota-Baxter operators and study infinitesimal deformations and extensions of order m deformations to order m+1 deformations of relative Rota-Baxter operators through the cohomology groups of relative Rota-Baxter operators. Moreover, we build the relation between the cohomology groups of relative Rota-Baxter operators on n-LieRep pairs and those on (n+1)-LieRep pairs by certain linear functions.
The present paper is devoted to the investigation of properties of Cartan subalgebras and regular elements in Leibniz $n$-algebras. The relationship between Cartan subalgebras and regular elements of given Leibniz $n$-algebra and Cartan subalgebras a nd regular elements of the corresponding factor $n$-Lie algebra is established.
In this paper the Erdos-Rado theorem is generalized to the class of well founded trees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا