Negative thermal expansion and antiferromagnetism in the actinide oxypnictide NpFeAsO


الملخص بالإنكليزية

A neptunium analogue of the LaFeAsO tetragonal layered compound has been synthesized and characterized by a variety of experimental techniques. The occurrence of long-range magnetic order below a critical temperature T_N = 57 K is suggested by anomalies in the temperature-dependent magnetic susceptibility, electrical resistivity, Hall coefficient, and specific heat curves. Below T_N, powder neutron diffraction measurements reveal an antiferromagnetic structure of the Np sublattice, with an ordered magnetic moment of 1.70(0.07) mu_B aligned along the crystallographic c-axis. No magnetic order has been observed on the Fe sublattice, setting an upper limit of about 0.3 mu_B for the ordered magnetic moment on the iron. High resolution x-ray powder diffraction measurements exclude the occurrence of lattice transformations down to 5 K, in sharp contrast to the observation of a tetragonal-to-orthorhombic distortion in the rare-earth analogues, which has been associated with the stabilization of a spin density wave on the iron sublattice. Instead, a significant expansion of the NpFeAsO lattice parameters is observed with decreasing temperature below T_N, corresponding to a relative volume change of about 0.2% and to an invar behavior between 5 and 20 K. First-principle electronic structure calculations based on the local-spin density plus Coulomb interaction and the local density plus Hubbard-I approximations provide results in good agreement with the experimental findings.

تحميل البحث