ترغب بنشر مسار تعليمي؟ اضغط هنا

Piezoelectric control of the magnetic anisotropy via interface strain coupling in a composite multiferroic structure

117   0   0.0 ( 0 )
 نشر من قبل Chenglong Jia
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate theoretically the magnetic dynamics in a ferroelectric/ferromagnetic heterostructure coupled via strain-mediated magnetoelectric interaction. We predict an electric field-induced magnetic switching in the plane perpendicular to the magneto-crystalline easy axis, and trace this effect back to the piezoelectric control of the magnetoelastic coupling. We also investigate the magnetic remanence and the electric coercivity.



قيم البحث

اقرأ أيضاً

Recent advances in the understanding of spin orbital effects in ultrathin magnetic heterostructures have opened new paradigms to control magnetic moments electrically. The Dzyaloshinskii-Moriya interaction (DMI) is said to play a key role in forming a Neel-type domain wall that can be driven by the spin Hall torque, a torque resulting from the spin current generated in a neighboring non-magnetic layer via the spin Hall effect. Here we show that the sign of the DMI, which determines the direction to which a domain wall moves with current, can be changed by modifying the adjacent non-magnetic layer. We find that the sense of rotation of a domain wall spiral is reversed when the Ta underlayer is doped with nitrogen in Ta|CoFeB|MgO heterostructures. The spin Hall angle of the Ta and nitrogen doped Ta underlayers carry the same sign, suggesting that the sign of the DMI is defined at the interface. Depending on the sense of rotation, spin transfer torque and spin Hall torque can either compete or assist each other, thus influencing the efficiency of moving domain walls with current.
163 - P. Jain , Q. Wang , M. Roldan 2014
Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution in the quest to realize magnetoelectric cou-pling between ferromagnetic and ferroelectric order parameters. Desp ite having antiferro-magnetic order, BiFeO3 (BFO) has nevertheless been a key material in this quest due to excel-lent ferroelectric properties at room temperature. We studied a superlattice composed of 8 repetitions of 6 unit cells of La0.7Sr0.3MnO3 (LSMO) grown on 5 unit cells of BFO. Significant net uncompensated magnetization in BFO is demonstrated using polarized neutron reflectometry in an insulating superlattice. Remarkably, the magnetization enables magnetic field to change the dielectric properties of the superlattice, which we cite as an example of synthetic magnetoelectric coupling. Importantly, this controlled creation of magnetic moment in BFO suggests a much needed path forward for the design and implementation of integrated oxide devices for next generation magnetoelectric data storage platforms.
Multiferroic rare earth manganites attracted recent attention because of the coexistence of different types of magnetic and ferroelectric orders resulting in complex phase diagrams and a wealth of physical phenomena. The coupling and mutual interfere nce of the different orders and the large magnetoelectric effect observed in several compounds are of fundamental interest and bear the potential for future applications in which the dielectric (magnetic) properties can be modified by the onset of a magnetic (dielectric) transition or the application of a magnetic (electric) field. The physical mechanisms of the magnetoelectric effect and the origin of ferroelectric order at magnetic transitions have yet to be explored. We discuss multiferroic phenomena in the hexagonal HoMnO3 and show that the strong magneto-dielectric coupling is intimately related to the lattice strain induced by unusually large spin-phonon correlations.
Recent advances in the understanding of spin orbital effects in ultrathin magnetic heterostructures have opened new paradigms to control magnetic moments electrically. The Dzyaloshinskii-Moriya interaction (DMI) is said to play a key role in forming a Neel-type domain wall that can be driven by the spin Hall torque, a torque resulting from the spin current generated in a neighboring non-magnetic layer via the spin Hall effect. Here we show that the strength and sign of the DMI can be changed by modifying the adjacent heavy metal underlayer (X) in perpendicularly magnetized X|CoFeB|MgO heterstructures. Albeit the same spin Hall angle, a domain wall moves along or against the electron flow depending on the underlayer. We find that the sense of rotation of a domain wall spiral11 is reversed when the underlayer is changed from Hf to W and the strength of DMI varies as the number of 5d electrons of the heavy metal layer changes. The DMI can even be tuned by adding nitrogen to the underlayer, thus allowing interface engineering of the magnetic texture in ultrathin magnetic heterostructures.
426 - M. Nakajima , Y. Ohata , S. Tajima 2021
We performed systematic transport measurements on FeSe single crystals with applying in-plane biaxial strain $varepsilon$ ranging from -0.96% to 0.23%. Biaxial strain was introduced by firmly gluing samples to various substrate materials with differe nt thermal expansion. With increasing $varepsilon$, structural and superconducting transition temperatures monotonically increased and decreased, respectively. We analyzed magneto-transport results using a compensated three-carrier model. The evaluated densities of hole and electron carriers systematically changed with strain. This indicates that we succeeded in controlling the band structure of single-crystalline FeSe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا