ترغب بنشر مسار تعليمي؟ اضغط هنا

Population and Coherence Dynamics in Light Harvesting Complex II (LH2)

287   0   0.0 ( 0 )
 نشر من قبل Jing Zhu
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic excitation population and coherence dynamics in the chromophores of the photosynthetic light harvesting complex 2 (LH2) B850 ring from purple bacteria (Rhodopseudomonas acidophila) have been studied theoretically at both physiological and cryogenic temperatures. Similar to the well-studied Fenna-Matthews-Olson (FMO) protein, oscillations of the excitation population and coherence in the site basis are observed in LH2 by using a scaled hierarchical equation of motion (HEOM) approach. However, this oscillation time (300 fs) is much shorter compared to the FMO protein (650 fs) at cryogenic temperature. Both environment and high temperature are found to enhance the propagation speed of the exciton wave packet yet they shorten the coherence time and suppress the oscillation amplitude of coherence and the population. Our calculations show that a long-lived coherence between chromophore electronic excited states can exist in such a noisy biological environment.



قيم البحث

اقرأ أيضاً

We discuss our recent theoretical work on vibronic coupling mechanisms in a model energy transfer system in the context of previous 2DEV experiments on a natural light-harvesting system, light-harvesting complex II (LHCII), where vibronic signatures were suggested to be involved in energy transfer. In this comparison, we directly assign the vibronic coupling mechanism in LHCII as arising from Herzberg-Teller activity and show how this coupling modulates the energy transfer dynamics in this photosynthetic system.
Natural and artificial light harvesting processes have recently gained new interest. Signatures of long lasting coherence in spectroscopic signals of biological systems have been repeatedly observed, albeit their origin is a matter of ongoing debate, as it is unclear how the loss of coherence due to interaction with the noisy environments in such systems is averted. Here we report experimental and theoretical verification of coherent exciton-vibrational (vibronic) coupling as the origin of long-lasting coherence in an artificial light harvester, a molecular J-aggregate. In this macroscopically aligned tubular system, polarization controlled 2D spectroscopy delivers an uncongested and specific optical response as an ideal foundation for an in-depth theoretical description. We derive analytical expressions that show under which general conditions vibronic coupling leads to prolonged excited-state coherence.
Non-Markovian effects in the evolution of open quantum systems have recently attracted widespread interest, particularly in the context of assessing the efficiency of energy and charge transfer in nanoscale biomolecular networks and quantum technolog ies. With the aid of many-body simulation methods, we uncover and analyse an ultrafast environmental process that causes energy relaxation in the reduced system to depend explicitly on the phase relation of the initial state preparation. Remarkably, for particular phases and system parameters, the net energy flow is uphill, transiently violating the principle of detailed balance, and implying that energy is spontaneously taken up from the environment. A theoretical analysis reveals that non-secular contributions, significant only within the environmental correlation time, underlie this effect. This suggests that environmental energy harvesting will be observable across a wide range of coupled quantum systems.
The energy transfer processes and coherent phenomena in the fucoxanthin-chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectro scopy. Experiments performed on the femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of ${rm Q}_{y}$ transitions of chlorophylls $a$ and $c$. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) $a$ and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the ${rm Q}_{y}$ transition of Chl $c$ revealed previously not identified mutually non-interacting chlorophyll $c$ states participating in femtosecond or picosecond energy transfer to the Chl $a$ molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl $c$ and Chl $a$ and the overall spatial arrangement of chlorophyll molecules.
A nanoring-rotaxane supramolecular assembly, with a Cy7 cyanine dye (hexamethylindotricarbocyanine) threaded along the axis of the nanoring, has been synthesized as a model for the energy transfer between the light harvesting complex LH1 and the reac tion center in purple bacteria photosynthesis. The complex displays efficient energy transfer from the central cyanine dye to the surrounding zinc porphyrin nanoring. We present a theoretical model that reproduces the absorption spectrum of the nanoring and quantifies the excitonic coupling between the nanoring and the central dye, explaining the efficient energy transfer and elucidating the similarity with structurally related natural light harvesting systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا