ﻻ يوجد ملخص باللغة العربية
We consider the rate of ionization of diffuse and molecular clouds in the interstellar medium by Galactic cosmic rays (GCR) in order to constrain its low energy spectrum. We extrapolate the GCR spectrum obtained from PAMELA at high energies ($ge 200$ GeV/ nucleon) and a recently derived GCR proton flux at $1hbox{--}200$ GeV from observations of gamma rays from molecular clouds, and find that the observed average Galactic ionization rate can be reconciled with this GCR spectrum if there is a low energy cutoff for protons at $10hbox{--}100$ MeV. We also identify the flattening below a few GeV as being due to (a) decrease of the diffusion coefficient and dominance of convective loss at low energy and (b) the expected break in energy spectrum for a constant spectral index in momentum. We show that the inferred CR proton spectrum of $Phi propto E_{kin}^{-1.7pm0.2}$ for $E_{kin} le$ few GeV, is consistent with a power-law spectrum in momentum $p^{-2.45pm0.4}$, which we identify as the spectrum at source. Diffusion loss at higher energies then introduces a steepening by $E^{-alpha}$ with $alpha sim 1/3$, making it consistent with high energy measurements.
In recent years, exciting developments have taken place in the identification of the role of cosmic rays in star-forming environments. Observations from radio to infrared wavelengths and theoretical modelling have shown that low-energy cosmic rays (<
In light of evidence for a high ionization rate due to Low-Energy Cosmic Rays (LECR), in diffuse molecular gas in the solar neighbourhood, we evaluate their heat input to the Warm Ionized Medium (WIM). LECR are much more effective at heating plasma t
Interpretations of synchrotron observations often assume a tight correlation between magnetic and cosmic ray energy densities. We examine this assumption using both test-particle simulations of cosmic rays and MHD simulations which include cosmic ray
We develop a model anisotropy best-fitting to the two-dimensional sky-map of multi-TeV galactic cosmic ray (GCR) intensity observed with the Tibet III air shower (AS) array. By incorporating a pair of intensity excesses in the hydrogen deflection pla
A self-consistent model of a one-dimensional cosmic-ray (CR) halo around the Galactic disk is formulated with the restriction to a minimum number of free parameters. It is demonstrated that the turbulent cascade of MHD waves does not necessarily play