ترغب بنشر مسار تعليمي؟ اضغط هنا

Ge/Si(001) heterostructures with dense arrays of Ge quantum dots: morphology, defects, photo-emf spectra and terahertz conductivity

115   0   0.0 ( 0 )
 نشر من قبل Vladimir Yuryev
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Issues of Ge hut array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Data of HRTEM studies of multilayer Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect films. Heteroepitaxial Si p-i-n-diodes with multilayer stacks of Ge/Si(001) quantum dot dense arrays built in intrinsic domains have been investigated and found to exhibit the photo-emf in a wide spectral range from 0.8 to 5 mcm. An effect of wide-band irradiation by infrared light on the photo-emf spectra has been observed. Photo-emf in different spectral ranges has been found to be differently affected by the wide-band irradiation. A significant increase in photo-emf is observed in the fundamental absorption range under the wide-band irradiation. The observed phenomena are explained in terms of positive and neutral charge states of the quantum dot layers and the Coulomb potential of the quantum dot ensemble. By using a coherent source spectrometer, first measurements of terahertz dynamical conductivity (absorptivity) spectra of Ge/Si(001) heterostructures were performed at frequencies 0.3-1.2 THz in the temperature interval from 300 to 5 K. The effective dynamical conductivity of the heterostructures with Ge quantum dots has been discovered to be significantly higher than that of the structure with the same amount of bulk germanium (not organized in an array of quantum dots). The excess conductivity is not observed in the structures with the Ge coverage less than 8 AA. When a Ge/Si(001) sample is cooled down the conductivity decreases. We discuss possible mechanisms that can be responsible for the observed effects.



قيم البحث

اقرأ أيضاً

Issues of Ge hut cluster nucleation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Data of HRTEM investigations of Ge/Si heterostructures a re presented with the focus on low-temperature formation of perfect multilayer films. Exploration of the photovoltaic effect in Si p--i--n-structures with Ge quantum dots allowed us to propose a new approach to designing of infrared detectors. First data on THz dynamical conductivity of Ge/Si(001) heterostructures in the temperature interval from 5 to 300 K and magnetic fields up to 6 T are reported.
The terahertz spectra of the dynamic conductivity and radiation absorption coefficient in germanium-silicon heterostructures with arrays of Ge hut clusters (quantum dots) have been measured for the first time in the frequency range of 0.3-1.2 THz at room temperature. It has been found that the effective dynamic conductivity and effective radiation absorption coefficient in the heterostructure due to the presence of germanium quantum dots in it are much larger than the respective quantities of both the bulk Ge single crystal and Ge/Si(001) without arrays of quantum dots. The possible microscopic mechanisms of the detected increase in the absorption in arrays of quantum dots have been discussed.
In this study we numerically calculate the spatial profile of mechanical strain on self-assembled germanium (Ge) quantum dots (QDs) grown on a silicon (Si) substrate. Although the topic has been exhaustively studied, interesting features have not bee n explained or even mentioned in the literature yet. We studied the effect of the cap layer considering two cases: capped QDs (where a Si cap is present above the Ge QDs) and uncapped QDs (where no Si is present above the Ge QDs). We observed that Ge in the capped QDs is more strained compared with the the uncapped QDs. This expected effect is attributed to the additional tension from the Si cap layer. However, the situation is opposite for the Si substrate, it is more strained in the uncapped QD because the Ge layer is less strained in this case. We also calculated the band-edge alignment for the electrons and holes.
Complex AC-conductance, $sigma^{AC}$, in the systems with dense Ge$_{0.7}$Si$_{0.3}$ quantum dot (QD) arrays in Si has been determined from simultaneous measurements of attenuation, $DeltaGamma=Gamma(H)-Gamma(0)$, and velocity, $Delta V /V=(V(H)-V(0) ) / V(0)$, of surface acoustic waves (SAW) with frequencies $f$ = 30-300 MHz as functions of transverse magnetic field $H leq$ 18 T in the temperature range $T$ = 1-20 K. It has been shown that in the sample with dopant (B) concentration 8.2$ times 10^{11}$ cm$^{-2}$ at temperatures $T leq$4 K the AC conductivity is dominated by hopping between states localized in different QDs. The observed power-law temperature dependence, $sigma_1(H=0)propto T^{2.4}$, and weak frequency dependence, $sigma_1(H=0)propto omega^0$, of the AC conductivity are consistent with predictions of the two-site model for AC hopping conductivity for the case of $omega tau_0 gg $1, where $omega=2pi f$ is the SAW angular frequency and $tau_0$ is the typical population relaxation time. At $T >$ 7 K the AC conductivity is due to thermal activation of the carriers (holes) to the mobility edge. In intermediate temperature region 4$ < T<$ 7 K, where AC conductivity is due to a combination of hops between QDs and diffusion on the mobility edge, one succeeded to separate both contributions. Temperature dependence of hopping contribution to the conductivity above $T^*sim$ 4.5 K saturates, evidencing crossover to the regime where $omega tau_0 < $1. From crossover condition, $omega tau_0(T^*)$ = 1, the typical value, $tau_0$, of the relaxation time has been determined.
The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these pro blems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C$_2$H$_4$) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by $30^circ$ with respect to each other. The growth mode is attributed to the mechanism when small graphene molecules nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا