ﻻ يوجد ملخص باللغة العربية
We calculate the lattice quark propagator in Coulomb gauge both from dynamical and quenched configurations. We show that in the continuum limit both the static and full quark propagator are multiplicatively renormalizable. From the propagator we extract the quark renormalization function Z(|p|) and the running mass M(|p|) and extrapolate the latter to the chiral limit. We find that M(|p|) practically coincides with the corresponding Landau gauge function for small momenta. The computation of M(|p|) can be however made more efficient in Coulomb gauge; this can lead to a better determination of the chiral mass and the quark anomalous dimension. Moreover from the structure of the full propagator we can read off an expression for the dispersion relation of quarks, compatible with an IR divergent effective energy. If confirmed on larger volumes this finding would allow to extend the Gribov-Zwanziger confinement mechanism to the fermionic sector of QCD.
We show that in the lattice Hamiltonian limit all Coulomb gauge propagators are consistent with the Gribov-Zwanziger confinement mechanism, with an IR enhanced effective energy for quarks and gluons and a diverging ghost form factor compatible with a
The quark propagator at finite temperature is investigated using quenched gauge configurations. The propagator form factors are investigated for temperatures above and below the gluon deconfinement temperature $T_c$ and for the various Matsubara freq
We investigate the equal-time (static) quark propagator in Coulomb gauge within the Hamiltonian approach to QCD. We use a non-Gaussian vacuum wave functional which includes the coupling of the quarks to the spatial gluons. The expectation value of th
We discuss the gluon propagator in 3- and 4-dimensional Yang-Mills theories in Coulomb gauge and compare it with the corresponding Landau gauge propagator, showing that for both the relevant IR mass scale coincides. We also report preliminary results
We study the infrared behavior of the effective Coulomb potential in lattice SU(3) Yang-Mills theory in the Coulomb gauge. We use lattices up to a size of 48^4 and three values of the inverse coupling, beta=5.8, 6.0 and 6.2. While finite-volume effec