ترغب بنشر مسار تعليمي؟ اضغط هنا

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function

129   0   0.0 ( 0 )
 نشر من قبل Ariel G. Sanchez
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain constraints on cosmological parameters from the spherically averaged redshift-space correlation function of the CMASS Data Release 9 (DR9) sample of the Baryonic Oscillation Spectroscopic Survey (BOSS). We combine this information with additional data from recent CMB, SN and BAO measurements. Our results show no significant evidence of deviations from the standard flat-Lambda CDM model, whose basic parameters can be specified by Omega_m = 0.285 +- 0.009, 100 Omega_b = 4.59 +- 0.09, n_s = 0.96 +- 0.009, H_0 = 69.4 +- 0.8 km/s/Mpc and sigma_8 = 0.80 +- 0.02. The CMB+CMASS combination sets tight constraints on the curvature of the Universe, with Omega_k = -0.0043 +- 0.0049, and the tensor-to-scalar amplitude ratio, for which we find r < 0.16 at the 95 per cent confidence level (CL). These data show a clear signature of a deviation from scale-invariance also in the presence of tensor modes, with n_s <1 at the 99.7 per cent CL. We derive constraints on the fraction of massive neutrinos of f_nu < 0.049 (95 per cent CL), implying a limit of sum m_nu < 0.51 eV. We find no signature of a deviation from a cosmological constant from the combination of all datasets, with a constraint of w_DE = -1.033 +- 0.073 when this parameter is assumed time-independent, and no evidence of a departure from this value when it is allowed to evolve as w_DE(a) = w_0 + w_a (1 - a). The achieved accuracy on our cosmological constraints is a clear demonstration of the constraining power of current cosmological observations.



قيم البحث

اقرأ أيضاً

We obtain constraints on the variation of the fundamental constants from the full shape of the redshift-space correlation function of a sample of luminous galaxies drawn from the Data Release 9 of the Baryonic Oscillations Spectroscopic Survey. We co mbine this information with data from recent CMB, BAO and H_0 measurements. We focus on possible variations of the fine structure constant alpha and the electron mass m_e in the early universe, and study the degeneracies between these constants and other cosmological parameters, such as the dark energy equation of state parameter w_DE, the massive neutrinos fraction f_ u, the effective number of relativistic species N_eff, and the primordial helium abundance Y_He. When only one of the fundamental constants is varied, our final bounds are alpha / alpha_0 = 0.9957_{-0.0042}^{+0.0041} and m_e /(m_e)_0 = 1.006_{-0.013}^{+0.014}. For their joint variation, our results are alpha / alpha_0 = 0.9901_{-0.0054}^{+0.0055} and m_e /(m_e)_0 = 1.028 +/- 0.019. Although when m_e is allowed to vary our constraints on w_DE are consistent with a cosmological constant, when alpha is treated as a free parameter we find w_DE = -1.20 +/- 0.13; more than 1 sigma away from its standard value. When f_ u and alpha are allowed to vary simultaneously, we find f_ u < 0.043 (95% CL), implying a limit of sum m_ u < 0.46 eV (95% CL), while for m_e variation, we obtain f_nu < 0.086 (95% CL), which implies sum m_ u < 1.1 eV (95% CL). When N_eff or Y_He are considered as free parameters, their simultaneous variation with alpha provides constraints close to their standard values (when the H_0 prior is not included in the analysis), while when m_e is allowed to vary, their preferred values are significantly higher. In all cases, our results are consistent with no variations of alpha or m_e at the 1 or 2 sigma level.
We explore the cosmological implications of anisotropic clustering measurements in configuration space of the final galaxy samples from Data Release 12 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We implement a new detailed modelling of the effects of non-linearities, galaxy bias and redshift-space distortions that can be used to extract unbiased cosmological information from our measurements for scales $s gtrsim 20,h^{-1}{rm Mpc}$. We combined the galaxy clustering information from BOSS with the latest cosmic microwave background (CMB) observations and Type Ia supernovae samples and found no significant evidence for a deviation from the $Lambda$CDM cosmological model. In particular, these data sets can constrain the dark energy equation of state parameter to $w_{rm DE}=-0.996pm0.042$ when assumed time-independent, the curvature of the Universe to $Omega_{k}=-0.0007pm 0.0030$ and the sum of the neutrino masses to $sum m_{ u} < 0.25,{rm eV}$ at 95 per cent CL. We explore the constraints on the growth rate of cosmic structures assuming $f(z)=Omega_{rm m}(z)^gamma$ and obtain $gamma = 0.609pm 0.079$, in good agreement with the predictions of general relativity of $gamma=0.55$. We compress the information of our clustering measurements into constraints on the parameter combinations $D_{rm V}(z)/r_{rm d}$, $F_{rm AP}(z)$ and $fsigma_8(z)$ at the effective redshifts of $z=0.38$, $0.51$ and $0.61$ with their respective covariance matrices and find good agreement with the predictions for these parameters obtained from the best-fitting $Lambda$CDM model to the CMB data from the Planck satellite. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.
We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 square degrees, as quantified by their redshift-space correlation funct ion. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on baryon acoustic oscillation (BAO) scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin, we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse distance. The combination of the redshift bins represents 1.8 per cent precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.
We extract cosmological information from the anisotropic power spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new FFT-based estimators, we measure the power spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles l > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias, and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular diameter distance, the Hubble parameter, and the cosmic growth rate, and explore the cosmological implications of our full shape clustering measurements in combination with CMB and SN Ia data. Assuming a {Lambda}CDM cosmology, we constrain the matter density to {Omega}_m = 0.311 -0.010 +0.009 and the Hubble parameter to H_0 = 67.6 -0.6 +0.7 km s^-1 Mpc^-1, at a confidence level (CL) of 68 per cent. We also allow for non-standard dark energy models and modifications of the growth rate, finding good agreement with the {Lambda}CDM paradigm. For example, we constrain the equation-of-state parameter to w = -1.019 -0.039 +0.048. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. 2016 to produce the final cosmological constraints from BOSS.
We explore the cosmological implications of the clustering wedges, xi_perp(s) and xi_para(s), of the CMASS Data Release 9 (DR9) sample of the Baryon Oscillation Spectroscopic Survey (BOSS). These clustering wedges are defined by averaging the full tw o-dimensional correlation function, xi(mu,s), over the ranges 0<mu<0.5 and 0.5<mu<1, respectively. These measurements allow us to constrain the parameter combinations D_A(z)/r_s(z_d)=9.03 +- 0.21 and cz/(r_s(z_d)H(z)) = 12.14 +- 0.43 at the mean redsfhit of the sample, z=0.57. We combine the information from the clustering wedges with recent measurements of CMB, BAO and type Ia supernovae to obtain constraints on the cosmological parameters of the standard LCDM model and a number of potential extensions. The information encoded in the clustering wedges is most useful when the dark energy equation of state is allowed to deviate from its standard LCDM value. The combination of all datasets shows no evidence of a deviation from a constant dark energy equation of state, in which case we find w_DE = -1.013 +- 0.064, in complete agreement with a cosmological constant. We explore potential deviations from general relativity by constraining the growth rate f(z)=d ln D(a)/ d ln a, in which case the combination of the CMASS clustering wedges with CMB data implies f(z=0.57)=0.719 +- 0.094, in accordance with the predictions of GR. Our results clearly illustrate the additional constraining power of anisotropic clustering measurements with respect to that of angle-averaged quantities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا