ﻻ يوجد ملخص باللغة العربية
Elliptic hypergeometric integrals describe superconformal indices of 4d supersymmetric field theories. We show that all t Hooft anomaly matching conditions for Seiberg dual theories can be derived from $SL(3,mathbb{Z})$-modular transformation properties of the kernels of dual indices.
We study the phase diagram of two-flavor massless two-color QCD (QC$_2$D) under the presence of quark chemical potentials and imaginary isospin chemical potentials. At the special point of the imaginary isospin chemical potential, called the isospin
We give a brief account of the key properties of elliptic hypergeometric integrals -- a relatively recently discovered top class of transcendental special functions of hypergeometric type. In particular, we describe an elliptic generalization of Eule
Basing on the systems of linear partial differential equations derived from Mellin-Barnes representations and Millers transformation, we obtain GKZ-hypergeometric systems of one-loop self energy, one-loop triangle, two-loop vacuum, and two-loop sunse
We study the discrete chiral- and center-symmetry t Hooft anomaly matching in the charge-$q$ two-dimensional Schwinger model. We show that the algebra of the discrete symmetry operators involves a central extension, implying the existence of $q$ vacu
The dependence of the energies of axially symmetric monopoles of magnetic charges 2 and 3, on the Higgs self-interaction coupling constant, is studied numerically. Comparing the energy per unit topological charge of the charge-2 monopole with the ene