ﻻ يوجد ملخص باللغة العربية
We study the expansion of repulsively interacting Bose-Einstein condensates (BECs) in shallow one-dimensional potentials. We show for these systems that the onset of wave chaos in the Gross-Pitaevskii equation (GPE), i.e. the onset of exponential separation in Hilbert space of two nearby condensate wave functions, can be used as indication for the onset of depletion of the BEC and the occupation of excited modes within a many-body description. Comparison between the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method and the GPE reveals a close correspondence between the many-body effect of depletion and the mean-field effect of wave chaos for a wide range of single-particle external potentials. In the regime of wave chaos the GPE fails to account for the fine-scale quantum fluctuations because many-body effects beyond the validity of the GPE are non-negligible. Surprisingly, despite the failure of the GPE to account for the depletion, coarse grained expectation values of the single-particle density such as the overall width of the atomic cloud agree very well with the many-body simulations. The time dependent depletion of the condensate could be investigated experimentally, e.g., via decay of coherence of the expanding atom cloud.
We have measured the quantum depletion of an interacting homogeneous Bose-Einstein condensate, and confirmed the 70-year old theory of N.N. Bogoliubov. The observed condensate depletion is reversibly tuneable by changing the strength of the interpart
We present observations of quantum depletion in expanding condensates released from a harmonic trap. We confirm experimental observations of slowly-decaying tails in the far-field beyond the thermal component, consistent with the survival of the quan
Mobile impurities in a Bose-Einstein condensate form quasiparticles called polarons. Here, we show that two such polarons can bind to form a bound bipolaron state. Its emergence is caused by an induced nonlocal interaction mediated by density oscilla
The ground state of a Bose-Einstein condensate in a two-dimensional trap potential is analyzed numerically at the infinite-particle limit. It is shown that the anisotropy of the many-particle position variance along the $x$ and $y$ axes can be opposi
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects. Here we show that even in a comparatively simple setup consisting of a charged impurity in a weakly interacting bosonic medium the competition