ترغب بنشر مسار تعليمي؟ اضغط هنا

An equation-free approach to coarse-graining the dynamics of networks

384   0   0.0 ( 0 )
 نشر من قبل Karthikeyan Rajendran
 تاريخ النشر 2012
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and illustrate an approach to coarse-graining the dynamics of evolving networks (networks whose connectivity changes dynamically). The approach is based on the equation-free framework: short bursts of detailed network evolution simulations are coupled with lifting and restriction operators that translate between actual network realizations and their (appropriately chosen) coarse observables. This framework is used here to accelerate temporal simulations (through coarse projective integration), and to implement coarsegrained fixed point algorithms (through matrix-free Newton-Krylov GMRES). The approach is illustrated through a simple network evolution example, for which analytical approximations to the coarse-grained dynamics can be independently obtained, so as to validate the computational results. The scope and applicability of the approach, as well as the issue of selection of good coarse observables are discussed.



قيم البحث

اقرأ أيضاً

We present a computer-assisted approach to coarse-graining the evolutionary dynamics of a system of nonidentical oscillators coupled through a (fixed) network structure. The existence of a spectral gap for the coupling network graph Laplacian suggest s that the graph dynamics may quickly become low-dimensional. Our first choice of coarse variables consists of the components of the oscillator states -their (complex) phase angles- along the leading eigenvectors of this Laplacian. We then use the equation-free framework [1], circumventing the derivation of explicit coarse-grained equations, to perform computational tasks such as coarse projective integration, coarse fixed point and coarse limit cycle computations. In a second step, we explore an approach to incorporating oscillator heterogeneity in the coarse-graining process. The approach is based on the observation of fastdeveloping correlations between oscillator state and oscillator intrinsic properties, and establishes a connection with tools developed in the context of uncertainty quantification.
Coarse graining enables the investigation of molecular dynamics for larger systems and at longer timescales than is possible at atomic resolution. However, a coarse graining model must be formulated such that the conclusions we draw from it are consi stent with the conclusions we would draw from a model at a finer level of detail. It has been proven that a force matching scheme defines a thermodynamically consistent coarse-grained model for an atomistic system in the variational limit. Wang et al. [ACS Cent. Sci. 5, 755 (2019)] demonstrated that the existence of such a variational limit enables the use of a supervised machine learning framework to generate a coarse-grained force field, which can then be used for simulation in the coarse-grained space. Their framework, however, requires the manual input of molecular features upon which to machine learn the force field. In the present contribution, we build upon the advance of Wang et al.and introduce a hybrid architecture for the machine learning of coarse-grained force fields that learns their own features via a subnetwork that leverages continuous filter convolutions on a graph neural network architecture. We demonstrate that this framework succeeds at reproducing the thermodynamics for small biomolecular systems. Since the learned molecular representations are inherently transferable, the architecture presented here sets the stage for the development of machine-learned, coarse-grained force fields that are transferable across molecular systems.
We study the coarse-graining approach to derive a generator for the evolution of an open quantum system over a finite time interval. The approach does not require a secular approximation but nevertheless generally leads to a Lindblad-Gorini-Kossakows ki-Sudarshan generator. By combining the formalism with Full Counting Statistics, we can demonstrate a consistent thermodynamic framework, once the switching work required for the coupling and decoupling with the reservoir is included. Particularly, we can write the second law in standard form, with the only difference that heat currents must be defined with respect to the reservoir. We exemplify our findings with simple but pedagogical examples.
Using an information theoretic point of view, we investigate how a dynamics acting on a network can be coarse grained through the use of graph partitions. Specifically, we are interested in how aggregating the state space of a Markov process accordin g to a partition impacts on the thus obtained lower-dimensional dynamics. We highlight that for a dynamics on a particular graph there may be multiple coarse grained descriptions that capture different, incomparable features of the original process. For instance, a coarse graining induced by one partition may be commensurate with a time-scale separation in the dynamics, while another coarse graining may correspond to a different lower-dimensional dynamics that preserves the Markov property of the original process. Taking inspiration from the literature of Computational Mechanics, we find that a convenient tool to summarise and visualise such dynamical properties of a coarse grained model (partition) is the entrogram. The entrogram gathers certain information-theoretic measures, which quantify how information flows across time steps. These information theoretic quantities include the entropy rate, as well as a measure for the memory contained in the process, i.e., how well the dynamics can be approximated by a first order Markov process. We use the entrogram to investigate how specific macro-scale connection patterns in the state-space transition graph of the original dynamics result in desirable properties of coarse grained descriptions. We thereby provide a fresh perspective on the interplay between structure and dynamics in networks, and the process of partitioning from an information theoretic perspective. We focus on networks that may be approximated by both a core-periphery or a clustered organization, and highlight that each of these coarse grained descriptions can capture different aspects of a Markov process acting on the network.
In this paper we present a variational technique that handles coarse-graining and passing to a limit in a unified manner. The technique is based on a duality structure, which is present in many gradient flows and other variational evolutions, and whi ch often arises from a large-deviations principle. It has three main features: (A) a natural interaction between the duality structure and the coarse-graining, (B) application to systems with non-dissipative effects, and (C) application to coarse-graining of approximate solutions which solve the equation only to some error. As examples, we use this technique to solve three limit problems, the overdamped limit of the Vlasov-Fokker-Planck equation and the small-noise limit of randomly perturbed Hamiltonian systems with one and with many degrees of freedom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا