ﻻ يوجد ملخص باللغة العربية
The cosmic microwave background (CMB) power spectrum is a powerful cosmological probe as it entails almost all the statistical information of the CMB perturbations. Having access to only one sky, the CMB power spectrum measured by our experiments is only a realization of the true underlying angular power spectrum. In this paper we aim to recover the true underlying CMB power spectrum from the one realization that we have without a need to know the cosmological parameters. The sparsity of the CMB power spectrum is first investigated in two dictionaries; Discrete Cosine Transform (DCT) and Wavelet Transform (WT). The CMB power spectrum can be recovered with only a few percentage of the coefficients in both of these dictionaries and hence is very compressible in these dictionaries. We study the performance of these dictionaries in smoothing a set of simulated power spectra. Based on this, we develop a technique that estimates the true underlying CMB power spectrum from data, i.e. without a need to know the cosmological parameters. This smooth estimated spectrum can be used to simulate CMB maps with similar properties to the true CMB simulations with the correct cosmological parameters. This allows us to make Monte Carlo simulations in a given project, without having to know the cosmological parameters. The developed IDL code, TOUSI, for Theoretical pOwer spectrUm using Sparse estImation, will be released with the next version of ISAP.
Observations of the Cosmic Microwave Background (CMB) provide increasingly accurate information about the structure of the Universe at the recombination epoch. Most of this information is encoded in the angular power spectrum of the CMB. The aim of t
We present two novel methods for the estimation of the angular power spectrum of cosmic microwave background (CMB) anisotropies. We assume an absolute CMB experiment with arbitrary asymmetric beams and arbitrary sky coverage. The methods differ from
We describe and implement an exact, flexible, and computationally efficient algorithm for joint component separation and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features are 1) conditional sampling of
We investigate the performance of a simple Bayesian fitting approach to correct the cosmic microwave background (CMB) B-mode polarization for gravitational lensing effects in the recovered probability distribution of the tensor-to-scalar ratio. We pe
We revisit the problem of exact CMB likelihood and power spectrum estimation with the goal of minimizing computational cost through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al. (1997), and here we develop i