ﻻ يوجد ملخص باللغة العربية
We report the outcome of a 3-day workshop on the Hubble constant (H_0) that took place during February 6-8 2012 at the Kavli Institute for Particle Astrophysics and Cosmology, on the campus of Stanford University. The participants met to address the following questions. Are there compelling scientific reasons to obtain more precise and more accurate measurements of H_0 than currently available? If there are, how can we achieve this goal? The answers that emerged from the workshop are (1) better measurements of H_0 provide critical independent constraints on dark energy, spatial curvature of the Universe, neutrino physics, and validity of general relativity, (2) a measurement of H_0 to 1% in both precision and accuracy, supported by rigorous error budgets, is within reach for several methods, and (3) multiple paths to independent determinations of H_0 are needed in order to access and control systematics.
The Hubble constant Ho describes not only the expansion of local space at redshift z ~ 0, but is also a fundamental parameter determining the evolution of the universe. Recent measurements of Ho anchored on Cepheid observations have reached a precisi
The current cosmological probes have provided a fantastic confirmation of the standard $Lambda$ Cold Dark Matter cosmological model, that has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity a f
We present a measurement of the Hubble constant made using geometric distance measurements to megamaser-hosting galaxies. We have applied an improved approach for fitting maser data and obtained better distance estimates for four galaxies previously
In relativistic inhomogeneous cosmology, structure formation couples to average cosmological expansion. A conservative approach to modelling this assumes an Einstein--de Sitter model (EdS) at early times and extrapolates this forward in cosmological
The $Lambda$ Cold Dark Matter model ($Lambda$CDM) represents the current standard model in cosmology. Within this, there is a tension between the value of the Hubble constant, $H_0$, inferred from local distance indicators and the angular scale of fl