ﻻ يوجد ملخص باللغة العربية
Direct visualization of electronic-structure symmetry within each crystalline unit cell is a new technique for complex electronic matter research. By studying the Bragg peaks in Fourier transforms of electronic structure images, and particularly by resolving both the real and imaginary components of the Bragg amplitudes, distinct types of intra-unit cell symmetry breaking can be studied. However, establishing the precise symmetry point of each unit cell in real space is crucial in defining the phase for such Bragg-peak Fourier analysis. Exemplary of this challenge is the high temperature superconductor Bi2Sr2CaCu2O8+d for which the surface Bi atom locations are observable, while it is the invisible Cu atoms that define the relevant CuO2 unit-cell symmetry point. Here we demonstrate, by imaging with picometer precision the electronic impurity states at individual Zn atoms substituted at Cu sites, that the phase established using the Bi lattice produces a ~2% (2pi) error relative to the actual Cu lattice. Such a phase assignment error would not diminish reliability in the determination of intra-unit-cell rotational symmetry breaking at the CuO2 plane. Moreover, this type of impurity atom substitution at the relevant symmetry site can be of general utility in phase determination for Bragg-peak Fourier analysis of intra-unit-cell symmetry.
Scanning tunneling microscopy is used to image the additional quasiparticle states generated by quantized vortices in the high-Tc superconductor Bi2Sr2CaCu2O8+d. They exhibit a Cu-O bond oriented checkerboard pattern, with four unit cell (4a0) period
Understanding the role played by broken symmetry states such as charge, spin, and orbital orders in the mechanism of emergent properties such as high-temperature superconductivity (HTSC) is a major current topic in materials research. That the order
Intra unit cell (IUC) magnetic order observed by polarized neutron diffraction (PND) is one of the hallmarks of the pseudogap state of high-temperature copper oxide superconductors. This experimental observation, usually interpreted as a result of lo
Understanding high-temperature superconductivity requires a prior knowledge of the nature of the enigmatic pseudogap metallic state, out of which the superconducting state condenses. In addition to the electronic orders involving charge degrees of fr
In order to identify the mechanism responsible for the formation of charge-density waves (CDW) in cuprate superconductors, it is important to understand which aspects of the CDWs microscopic structure are generic and which are material-dependent. Her