ﻻ يوجد ملخص باللغة العربية
DNA replication is an essential process in biology and its timing must be robust so that cells can divide properly. Random fluctuations in the formation of replication starting points, called origins, and the subsequent activation of proteins lead to variations in the replication time. We analyse these stochastic properties of DNA and derive the positions of origins corresponding to the minimum replication time. We show that under some conditions the minimization of replication time leads to the grouping of origins, and relate this to experimental data in a number of species showing origin grouping.
We analyze the statistical properties of Poincare recurrences of Homo sapiens, mammalian and other DNA sequences taken from Ensembl Genome data base with up to fifteen billions base pairs. We show that the probability of Poincare recurrences decays i
Many non-coding RNAs are known to play a role in the cell directly linked to their structure. Structure prediction based on the sole sequence is however a challenging task. On the other hand, thanks to the low cost of sequencing technologies, a very
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell
Stochastic fluctuations of molecule numbers are ubiquitous in biological systems. Important examples include gene expression and enzymatic processes in living cells. Such systems are typically modelled as chemical reaction networks whose dynamics are
In response to a concentration gradient of nutrient, E. coli bacterium modulates the rotational bias of flagellar motors which control its run-and-tumble motion, to migrate towards regions of high nutrient concentration. Presence of stochastic noise