ﻻ يوجد ملخص باللغة العربية
The requirement that packings of hard particles, arguably the simplest structural glass, cannot be compressed by rearranging their network of contacts is shown to yield a new constraint on their microscopic structure. This constraint takes the form a bound between the distribution of contact forces P(f) and the pair distribution function g(r): if P(f) sim f^{theta} and g(r) sim (r-{sigma})^(-{gamma}), where {sigma} is the particle diameter, one finds that {gamma} geq 1/(2+{theta}). This bound plays a role similar to those found in some glassy materials with long-range interactions, such as the Coulomb gap in Anderson insulators or the distribution of local fields in mean-field spin glasses. There is ground to believe that this bound is saturated, offering an explanation for the presence of avalanches of rearrangements with power-law statistics observed in packings.
Assemblies of purely repulsive and frictionless particles, such as emulsions or hard spheres, display very curious properties near their jamming transition, which occurs at the random close packing for mono-disperse spheres. Although such systems do
We present a comparative numerical study of the ordered and the random two-dimensional sine-Gordon models on a lattice. We analytically compute the main features of the expected high temperature phase of both models, described by the Edwards-Wilkinso
Using computed x-ray tomography we determine the three dimensional (3d) structure of binary hard sphere mixtures as a function of composition and size ratio of the particles, q. Using a recently introduced four-point correlation function we reveal th
We analyze recent experiments on the dilute rare-earth compound LiHo_xY_(1-x)F_4 in the context of an effective Ising dipolar model. Using a Monte Carlo method we calculate the low-temperature behavior of the specific heat and linear susceptibility,
We experimentally investigate the response of a sheared granular medium in a Couette geometry. The apparatus exhibits the expected stick-slip motion and we probe it in the very intermittent regime resulting from low driving. Statistical analysis of t