ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative MRFM characterization of the autonomous and forced dynamics in a spin transfer nano-oscillator

97   0   0.0 ( 0 )
 نشر من قبل Gregoire De Loubens
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Hamadeh




اسأل ChatGPT حول البحث

Using a magnetic resonance force microscope (MRFM), the power emitted by a spin transfer nano-oscillator consisting of a normally magnetized Py$|$Cu$|$Py circular nanopillar is measured both in the autonomous and forced regimes. From the power behavior in the subcritical region of the autonomous dynamics, one obtains a quantitative measurement of the threshold current and of the noise level. Their field dependence directly yields both the spin torque efficiency acting on the thin layer and the nature of the mode which first auto-oscillates: the lowest energy, spatially most uniform spin-wave mode. From the MRFM behavior in the forced dynamics, it is then demonstrated that in order to phase-lock this auto-oscillating mode, the external source must have the same spatial symmetry as the mode profile, i.e., a uniform microwave field must be used rather than a microwave current flowing through the nanopillar.



قيم البحث

اقرأ أيضاً

287 - A. Hamadeh 2013
We investigate the microwave characteristics of a spin transfer nano-oscillator (STNO) based on coupled vortices as a function of the perpendicular magnetic field $H_perp$. While the generation linewidth displays strong variations on $H_perp$ (from 4 0 kHz to 1 MHz), the frequency tunability in current remains almost constant (~7 MHz/mA). We demonstrate that our vortex-based oscillator is quasi-isochronous independently of $H_perp$, so that the severe nonlinear broadening usually observed in STNOs does not exist. Interestingly, this does not imply a loss of frequency tunability, which is here governed by the current induced Oersted field. Nevertheless this is not sufficient to achieve the highest spectral purity in the full range of $H_perp$ either: we show that the observed linewidth broadenings are due to the excited mode interacting with a lower energy overdamped mode, which occurs at the successive crossings between harmonics of these two modes. These findings open new possibilities for the design of STNOs and the optimization of their performance.
The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive cu rrents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.
A theoretical study of delayed feedback in spin-torque nano-oscillators is presented. A macrospin geometry is considered, where self-sustained oscillations are made possible by spin transfer torques associated with spin currents flowing perpendicular to the film plane. By tuning the delay and amplification of the self-injected signal, we identify dynamical regimes in this system such as chaos, switching between precession modes with complex transients, and oscillator death. Such delayed feedback schemes open up a new field of exploration for such oscillators, where the complex transient states might find important applications in information processing.
Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in $mathrm{Y_{3}Fe_{5}O_{12}/Pt}$ bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the $mathrm{Y_{3}Fe_{5}O_{12}}$ layer. This leads to excitation of auto-oscillations of the $mathrm{Y_{3}Fe_{5}O_{12}}$ magnetization and generation of coherent microwave radiation. Our work paves the way towards spin caloritronic devices for microwave and magnonic applications.
288 - M. C. Wu , A. Aziz , D. Morecroft 2008
Using a three-dimensional focused-ion beam lithography process we have fabricated nanopillar devices which show spin transfer torque switching at zero external magnetic fields. Under a small in-plane external bias field, a field-dependent peak in the differential resistance versus current is observed similar to that reported in asymmetrical nanopillar devices. This is interpreted as evidence for the low-field excitation of spin waves which in our case is attributed to a spin-scattering asymmetry enhanced by the IrMn exchange bias layer coupled to a relatively thin CoFe fixed layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا