ﻻ يوجد ملخص باللغة العربية
We have used the Australia Telescope Compact Array to measure the absorption from the 2(0) - 3(-1}E 12.2 GHz transition of methanol towards the z=0.89 lensing galaxy in the PKS B 1830-211 gravitational lens system. Comparison of the velocity of the main absorption feature with the published absorption spectrum from the 1(0) - 2(-1)E transition of methanol shows that they differ by -0.6 +/- 1.6 km/s . We can use these observations to constrain the changes in the proton-to-electron mass ratio from z=0.89 to the present to 0.8 +/- 2.1 x 10^-7. This result is consistent, and of similar precision to recent observations at z = 0.68 achieved through comparison of a variety of rotational and inversion transitions, and approximately a factor of 2 better than previous constraints obtained in this source. Future more sensitive observations which incorporate additional rotational methanol transitions offer the prospect of improving current results by a factor of 5-10.
We report Karl G. Jansky Very Large Array (VLA) absorption spectroscopy in four methanol (CH$_3$OH) lines in the $z = 0.88582$ gravitational lens towards PKS1830-211. Three of the four lines have very different sensitivity coefficients $K_mu$ to chan
Molecular transitions recently discovered at redshift z_abs=2.059 toward the bright background quasar J2123-0050 are analysed to limit cosmological variation in the proton-to-electron mass ratio, mu=m_p/m_e. Observed with the Keck telescope, the opti
Far infrared fine-structure transitions of CI and CII and rotational transitions of CO are used to probe hypothetical variations of the electron-to-proton mass ratio mu = m_e/m_p at the epoch of reionization (z > 6). A constraint on Delta mu/mu = (mu
A limit on a possible cosmological variation of the proton-to-electron mass ratio $mu$ is derived from methanol (CH$_3$OH) absorption lines in the benchmark PKS1830$-$211 lensing galaxy at redshift $z = 0.89$ observed with the Effelsberg 100-m radio
Astrophysical molecular spectroscopy is an important method of searching for new physics through probing the variation of the proton-to-electron mass ratio, $mu$, with existing constraints limiting variation to a fractional change of less than 10$^{-