ﻻ يوجد ملخص باللغة العربية
The anisotropic physical properties of single crystals of orthorhombic PtSn4 are reported for magnetic fields up to 140 kOe, applied parallel and perpendicular to the crystallographic b-axis. The magnetic susceptibility has an approximately temperature independent behavior and reveals an anisotropy between ac-plane and b-axis. Clear de Haas-van Alphen oscillations in fields as low as 5 kOe and at temperatures as high as 30 K were detected in magnetization isotherms. The thermoelectric power and resistivity of PtSn4 show the strong temperature and magnetic field dependencies. A change of the thermoelectric power at H = 140 kOe is observed as high as ~ 50 mu-V/K. Single crystals of PtSn4 exhibit very large transverse magnetoresistance of ~ 5x10^5% for the ac-plane and of ~ 1.4x10^5% for the b-axis resistivity at 1.8 K and 140 kOe, as well as pronounced Shubnikov-de Haas oscillations. The magnetoresistance of PtSn4 appears to obey Kohlers rule in the temperature and field range measured. The Hall resistivity shows a linear temperature dependence at high temperatures followed by a sign reversal around 25 K which is consistent with thermoelectric power measurements. The observed quantum oscillations and band structure calculations indicate that PtSn4 has three dimensional Fermi surfaces.
Starting from a recently proposed comprehensive theory for the high-Tc superconductivity in cuprates, we derive a general analytic expression for the planar resistivity, in the presence of an applied external magnetic field $textbf{H}$ and explore it
Electrical conductivity, thermopower and magnetic properties of Fe-intercalated Fe0.33VSe2 has been reported between 4.2K - 300K. We observe a first order transition in the resistivity of the sintered pellets around 160K on cooling. The electronic pr
Nanostructured La0.67Ca0.33MnO3 (NS-LCMO) was formed by pulsed-laser deposition on the surface of porous Al2O3. The resistance peak temperature (Tp) of the NS-LCMO increases with increasing average thickness of the films, while their Curie temperatur
We have used oxygen ions irradiation to generate controlled structural disorder in thin manganite films. Conductive atomic force microscopy CAFM), transport and magnetic measurements were performed to analyze the influence of the implantation process
The effects of Cu-doping on the structural, magnetic, and transport properties of La0.7Sr0.3Mn1-xCuxO3 (0 < x < 0.20) have been studied using neutron diffraction, magnetization and magnetoresistance (MR) measurements. All samples show the rhombohedra