ﻻ يوجد ملخص باللغة العربية
Explicit descriptions of local integral Galois module generators in certain extensions of $p$-adic fields due to Pickett have recently been used to make progress with open questions on integral Galois module structure in wildly ramified extensions of number fields. In parallel, Pulita has generalised the theory of Dworks power series to a set of power series with coefficients in Lubin-Tate extensions of $Q_p$ to establish a structure theorem for rank one solvable p-adic differential equations. In this paper we first generalise Pulitas power series using the theories of formal group exponentials and ramified Witt vectors. Using these results and Lubin-Tate theory, we then generalise Picketts constructions in order to give an analytic representation of integral normal basis generators for the square root of the inverse different in all abelian totally, weakly and wildly ramified extensions of a p-adic field. Other applications are also exposed.
Let $F$ be a finite extension of $mathbb{Q}_p$. We determine the Lubin-Tate $(varphi,Gamma)$-modules associated to the absolutely irreducible mod $p$ representations of the absolute Galois group ${rm Gal}(bar{F}/F)$.
In my 2009 paper at Inventiones, we determine the cohomology of Lubin-Tate spaces globally using the comparison theorem of Berkovich by computing the fibers at supersingular points of the perverse sheaf of vanishing cycle $Psi$ of some Shimura variet
Let $X$ be a smooth projective connected curve of genus $gge 2$ defined over an algebraically closed field $k$ of characteristic $p>0$. Let $G$ be a finite group, $P$ a Sylow $p$-subgroup of $G$ and $N_G(P)$ its normalizer in $G$. We show that if the
We prove that both local Galois representations and $(varphi,Gamma)$-modules can be recovered from prismatic F-crystals, from which we obtain a new proof of the equivalence of Galois representations and $(varphi,Gamma)$-modules.
We show that Lubin-Tate spectra at the prime $2$ are Real oriented and Real Landweber exact. The proof is by application of the Goerss-Hopkins-Miller theorem to algebras with involution. For each height $n$, we compute the entire homotopy fixed point