ﻻ يوجد ملخص باللغة العربية
Heterogeneous systems are becoming more common on High Performance Computing (HPC) systems. Even using tools like CUDA and OpenCL it is a non-trivial task to obtain optimal performance on the GPU. Approaches to simplifying this task include Merge (a library based framework for heterogeneous multi-core systems), Zippy (a framework for parallel execution of codes on multiple GPUs), BSGP (a new programming language for general purpose computation on the GPU) and CUDA-lite (an enhancement to CUDA that transforms code based on annotations). In addition, efforts are underway to improve compiler tools for automatic parallelization and optimization of affine loop nests for GPUs and for automatic translation of OpenMP parallelized codes to CUDA. In this paper we present an alternative approach: a new computational framework for the development of massively data parallel scientific codes applications suitable for use on such petascale/exascale hybrid systems built upon the highly scalable Cactus framework. As the first non-trivial demonstration of its usefulness, we successfully developed a new 3D CFD code that achieves improved performance.
Computational science is changing to be data intensive. Super-Computers must be balanced systems; not just CPU farms but also petascale IO and networking arrays. Anyone building CyberInfrastructure should allocate resources to support a balanced Tier-1 through Tier-3 design.
High-performance computing (HPC) is undergoing significant changes. Next generation HPC systems are equipped with diverse global and local resources, such as I/O burst buffer resources, memory resources (e.g., on-chip and off-chip RAM, external RAM/N
We have extended the Falkon lightweight task execution framework to make loosely coupled programming on petascale systems a practical and useful programming model. This work studies and measures the performance factors involved in applying this appro
We aim to implement a Big Data/Extreme Computing (BDEC) capable system infrastructure as we head towards the era of Exascale computing - termed SAGE (Percipient StorAGe for Exascale Data Centric Computing). The SAGE system will be capable of storing
Cloud computing refers to maximizing efficiency by sharing computational and storage resources, while data-parallel systems exploit the resources available in the cloud to perform parallel transformations over large amounts of data. In the same line,