ﻻ يوجد ملخص باللغة العربية
Symmetrical Multilevel Diversity Coding (SMDC) is a network compression problem introduced by Roche (1992) and Yeung (1995). In this setting, a simple separate coding strategy known as superposition coding was shown to be optimal in terms of achieving the minimum sum rate (Roche, Yeung, and Hau, 1997) and the entire admissible rate region (Yeung and Zhang, 1999) of the problem. This paper considers a natural generalization of SMDC to the secure communication setting with an additional eavesdropper. It is required that all sources need to be kept perfectly secret from the eavesdropper as long as the number of encoder outputs available at the eavesdropper is no more than a given threshold. First, the problem of encoding individual sources is studied. A precise characterization of the entire admissible rate region is established via a connection to the problem of secure coding over a three-layer wiretap network and utilizing some basic polyhedral structure of the admissible rate region. Building on this result, it is then shown that superposition coding remains optimal in terms of achieving the minimum sum rate for the general secure SMDC problem.
Symmetrical multilevel diversity coding (SMDC) is a classical model for coding over distributed storage. In this setting, a simple separate encoding strategy known as superposition coding was shown to be optimal in terms of achieving the minimum sum
Multilevel diversity coding is a classical coding model where multiple mutually independent information messages are encoded, such that different reliability requirements can be afforded to different messages. It is well known that {em superposition
It is well known that {em superposition coding}, namely separately encoding the independent sources, is optimal for symmetric multilevel diversity coding (SMDC) (Yeung-Zhang 1999). However, the characterization of the coding rate region therein invol
Lattice and special nonlattice multilevel constellations constructed from binary codes, such as Constructions A, C, and D, have relevant applications in Mathematics (sphere packing) and in Communication (multi-stage decoding and efficient vector quan
We investigate the construction of weakly-secure index codes for a sender to send messages to multiple receivers with side information in the presence of an eavesdropper. We derive a sufficient and necessary condition for the existence of index codes