ترغب بنشر مسار تعليمي؟ اضغط هنا

Inferences on the distribution of Ly-alpha emission of z~7 and z~8 galaxies

214   0   0.0 ( 0 )
 نشر من قبل Tommaso Treu
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T.Treu




اسأل ChatGPT حول البحث

Spectroscopic confirmation of galaxies at z~7 and above has been extremely difficult, owing to a drop in intensity of Ly-alpha emission in comparison with samples at z~6. This crucial finding could potentially signal the ending of cosmic reionization. However it is based on small datasets, often incomplete and heterogeneous in nature. We introduce a flexible Bayesian framework, useful to interpret such evidence. Within this framework, we implement two simple phenomenological models: a smooth one, where the distribution of Ly-alpha is attenuated by a factor es with respect to z~6; a patchy one where a fraction ep is absorbed/non-emitted while the rest is unabsorbed. From a compilation of 39 observed z~7 galaxies we find es=0.69+-0.12 and ep=0.66+-0.16. The models can be used to compute fractions of emitters above any equivalent width W. For W>25AA, we find X^{25}_{z=7}=0.37+-0.11 (0.14+-0.06) for galaxies fainter (brighter) than M_{UV}=-20.25 for the patchy model, consistent with previous work, but with smaller uncertainties by virtue of our full use of the data. At z~8 we combine new deep (5-sigma flux limit 10^{-17}ergs^{-1}cm^{-2}) Keck-NIRSPEC observations of a bright Y-dropout identified by our BoRG Survey, with those of three objects from the literature and find that the inference is inconclusive. We compute predictions for future near-infrared spectroscopic surveys and show that it is challenging but feasible to constrain the distribution of Ly-alpha emitters at z~8 and distinguish between models.



قيم البحث

اقرأ أيضاً

We describe the results of a new, wide-field survey for z=3.1 Ly-alpha emission-line galaxies (LAEs) in the Extended Chandra Deep Field South (ECDF-S). By using a nearly top-hat 5010 Angstrom filter and complementary broadband photometry from the MUS YC survey, we identify a complete sample of 141 objects with monochromatic fluxes brighter than 2.4E-17 ergs/cm^2/s and observers-frame equivalent widths greater than ~ 80 Angstroms (i.e., 20 Angstroms in the rest-frame of Ly-alpha). The bright-end of this dataset is dominated by x-ray sources and foreground objects with GALEX detections, but when these interlopers are removed, we are still left with a sample of 130 LAE candidates, 39 of which have spectroscopic confirmations. This sample overlaps the set of objects found in an earlier ECDF-S survey, but due to our filters redder bandpass, it also includes 68 previously uncataloged sources. We confirm earlier measurements of the z=3.1 LAE emission-line luminosity function, and show that an apparent anti-correlation between equivalent width and continuum brightness is likely due to the effect of correlated errors in our heteroskedastic dataset. Finally, we compare the properties of z=3.1 LAEs to LAEs found at z=2.1. We show that in the ~1 Gyr after z~3, the LAE luminosity function evolved significantly, with L* fading by ~0.4 mag, the number density of sources with L > 1.5E42 ergs/s declining by ~50%, and the equivalent width scale-length contracting from 70^{+7}_{-5} Angstroms to 50^{+9}_{-6} Angstroms. When combined with literature results, our observations demonstrate that over the redshift range z~0 to z~4, LAEs contain less than ~10% of the star-formation rate density of the universe.
We study the average Ly$alpha$ emission associated with high-$z$ strong (log $N$(H I) $ge$ 21) damped Ly$alpha$ systems (DLAs). We report Ly$alpha$ luminosities ($L_{rm Lyalpha}$) for the full as well as various sub-samples based on $N$(H I), $z$, $( r-i)$ colours of QSOs and rest equivalent width of Si II$lambda$1526 line (i.e., $W_{1526}$). For the full sample, we find $L_{rm Lyalpha}$$< 10^{41} (3sigma) rm erg s^{-1}$ with a $2.8sigma$ level detection of Ly$alpha$ emission in the red part of the DLA trough. The $L_{rm Lyalpha}$ is found to be higher for systems with higher $W_{1526}$ with its peak, detected at $geq 3sigma$, redshifted by about 300-400 $rm km s^{-1}$ with respect to the systemic absorption redshift, as seen in Lyman Break Galaxies (LBGs) and Ly$alpha$ emitters. A clear signature of a double-hump Ly$alpha$ profile is seen when we consider $W_{1526} ge 0.4$ AA and $(r-i) < 0.05$. Based on the known correlation between metallicity and $W_{1526}$, we interpret our results in terms of star formation rate (SFR) being higher in high metallicity (mass) galaxies with high velocity fields that facilitates easy Ly$alpha$ escape. The measured Ly$alpha$ surface brightness requires local ionizing radiation that is 4 to 10 times stronger than the metagalactic UV background at these redshifts. The relationship between the SFR and surface mass density of atomic gas seen in DLAs is similar to that of local dwarf and metal poor galaxies. We show that the low luminosity galaxies will contribute appreciably to the stacked spectrum if the size-luminosity relation seen for H I at low-$z$ is also present at high-$z$. Alternatively, large Ly$alpha$ halos seen around LBGs could also explain our measurements.
88 - Intae Jung 2020
Ly$alpha$ emission from galaxies can be utilized to characterize the ionization state in the intergalactic medium (IGM). We report our search for Ly$alpha$ emission at $z>7$ using a comprehensive Keck/MOSFIRE near-infrared spectroscopic dataset, as p art of the Texas Spectroscopic Search for Ly$alpha$ Emission at the End of Reionization Survey. We analyze data from 10 nights of MOSFIRE observations which together target 72 high-$z$ candidate galaxies in the GOODS-N field, all with deep exposure times of 4.5-19 hr. Utilizing an improved automated emission-line search, we report 10 Ly$alpha$ emission lines detected ($>$4$sigma$) at $z>7$, significantly increasing the spectroscopically confirmed sample. Our sample includes large equivalent-width (EW) Ly$alpha$ emitters ($>$50r{A}), and additional tentative Ly$alpha$ emission lines detected at 3 - 4$sigma$ from five additional galaxies. We constrain the Ly$alpha$ EW distribution at $zsim7.6$, finding a significant drop from $zlesssim6$, suggesting an increasing fraction of neutral hydrogen (HI) in the IGM in this epoch. We estimate the Ly$alpha$ transmission through the IGM ($=$EW$_{zsimtext{7.6}}$/EW$_{zsimtext{2-6}}$), and infer an IGM HI fraction ($X_{text{HI}}$) of $49^{+19}_{-19}%$ at $zsim7.6$, which is lower in modest tension ($>$1$sigma$) with recent measurements at $z sim$ 7.6. The spatial distribution of the detected Ly$alpha$ emitters implies the presence of a potential highly ionized region at $zsim7.55$ which hosts four Ly$alpha$ emitters within a $sim$ 40 cMpc spatial separation. The prominence of this ionized region in our dataset could explain our lower inferred value of $X_{text{HI}}$, though our analysis is also sensitive to the chosen reference Ly$alpha$ EW distribution values and reionization models.
135 - Joseph Caruana 2012
We present Gemini/GNIRS spectroscopic observations of 4 z-band (z~7) dropout galaxies and VLT/XSHOOTER observations of one z-band dropout and 3 Y-band (z~8-9) dropout galaxies in the Hubble Ultra Deep Field, which were selected with Wide Field Camera 3 imaging on the Hubble Space Telescope. We find no evidence of Lyman-alpha emission with a typical 5-sigma sensitivity of 5X10^-18erg/cm^2/s, and we use the upper limits on Lyman-alpha flux and the broad-band magnitudes to constrain the rest-frame equivalent widths for this line emission. Accounting for incomplete spectral coverage, we survey 3.0 z-band dropouts and 2.9 Y-band dropouts to a Lyman-alpha rest-frame equivalent width limit > 120Ang (for an unresolved emission line); for an equivalent width limit of 50Ang the effective numbers of drop-outs surveyed fall to 1.2 z-band drop-outs and 1.5 Y-band drop-outs. A simple model where the fraction of high rest-frame equivalent width emitters follows the trend seen at z=3-6.5 is inconsistent with our non-detections at z=7-9 at the ~ 1-sigma level for spectrally unresolved lines, which may indicate that a significant neutral HI fraction in the intergalactic medium suppresses the Lyman-alpha line in z-drop and Y-drop galaxies at z > 7.
We report on deep spectroscopy using LRIS on Keck I and FORS2 on the VLT of a sample of 22 candidate z~6 Lyman Break galaxies (LBGs) selected by the i-z> 1.3 dropout criterion. Redshifts could be measured for eight objects. These redshifts are all in the range z = 5.5 - 6.1, confirming the efficiency of the i-z color selection technique. Six of the confirmed galaxies show Ly-alpha emission. Assuming that the 14 objects without redshifts are z~6 LBGs, but lack detectable Ly-alpha emission lines, we infer that the fraction of Ly-alpha emitting LBGs with Ly-alpha equivalent widths greater than 20 Angstroms among z~6 LBGs is ~30%, similar to that found at z~3. Every Ly-alpha emitting object in our sample is compact with r <= 0.14. Furthermore, all the Ly-alpha emitting objects in our sample are more compact than average relative to the observed size-magnitude relation of a large i-dropout sample (332 candidate z~6 objects). We can reject the hypothesis that the Ly-alpha emitting population is a subset of the rest of the z~6 LBG population at >97% confidence. We speculate the small sizes of Ly-alpha emitting LBGs are due to these objects being less massive than other LBGs at z~6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا