ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar flares as harbinger of new physics

111   0   0.0 ( 0 )
 نشر من قبل Theopisti Dafni
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work provides additional evidence on the involvement of exotic particles like axions and/or other WISPs, following recent measurements during the quietest Sun and flaring Sun. Thus, SPHINX mission observed a minimum basal soft X-rays emission in the extreme solar minimum in 2009. The same scenario (with ~17 meV axions) fits also the dynamical behaviour of white-light solar flares, like the measured spectral components in the visible and in soft X-rays, and, the timing between them. Solar chameleons remain a viable candidate, since they may preferentially convert to photons in outer space.



قيم البحث

اقرأ أيضاً

We analyse the temporal evolution of the Differential Emission Measure (DEM) of solar active regions and explore its usage in solar flare prediction. The DEM maps are provided by the Gaussian Atmospheric Imaging Assembly (GAIA-DEM) archive, calculate d assuming a Gaussian dependence of the DEM on the logarithmic temperature. We analyse time-series of sixteen solar active regions and a statistically significant sample of 9454 point-in-time observations corresponding to hundreds of regions observed during solar cycle 24. The time-series analysis shows that the temporal derivatives of the Emission Measure dEM/dt and the maximum DEM temperature dTmax/dt frequently exhibit high positive values a few hours before M- and X-class flares, indicating that flaring regions become brighter and hotter as the flare onset approaches. From the point-in-time observations we compute the conditional probabilities of flare occurrences using the distributions of positive values of the dEM/dt, and dTmax/dt and compare them with corresponding flaring probabilities of the total unsigned magnetic flux, a conventionally used, standard flare predictor. For C-class flares, conditional probabilities have lower or similar values with the ones derived for the unsigned magnetic flux, for 24 and 12 hours forecast windows. For M- and X-class flares, these probabilities are higher than those of the unsigned flux for higher parameter values. Shorter forecast windows improve the conditional probabilities of dEM/dt, and dTmax/dt in comparison to those of the unsigned magnetic flux. We conclude that flare forerunner events such as preflare heating or small flare activity prior to major flares reflect on the temporal evolution of EM and Tmax. Of these two, the temporal derivative of the EM could conceivably be used as a credible precursor, or short-term predictor, of an imminent flare.
Current state-of-the-art spectrographs cannot resolve the fundamental spatial (sub-arcseconds) and temporal scales (less than a few tens of seconds) of the coronal dynamics of solar flares and eruptive phenomena. The highest resolution coronal data t o date are based on imaging, which is blind to many of the processes that drive coronal energetics and dynamics. As shown by IRIS for the low solar atmosphere, we need high-resolution spectroscopic measurements with simultaneous imaging to understand the dominant processes. In this paper: (1) we introduce the Multi-slit Solar Explorer (MUSE), a spaceborne observatory to fill this observational gap by providing high-cadence (<20 s), sub-arcsecond resolution spectroscopic rasters over an active region size of the solar transition region and corona; (2) using advanced numerical models, we demonstrate the unique diagnostic capabilities of MUSE for exploring solar coronal dynamics, and for constraining and discriminating models of solar flares and eruptions; (3) we discuss the key contributions MUSE would make in addressing the science objectives of the Next Generation Solar Physics Mission (NGSPM), and how MUSE, the high-throughput EUV Solar Telescope (EUVST) and the Daniel K Inouye Solar Telescope (and other ground-based observatories) can operate as a distributed implementation of the NGSPM. This is a companion paper to De Pontieu et al. (2021; arXiv:2106.15584), which focuses on investigating coronal heating with MUSE.
The spectrum of gyrosynchrotron emission from solar flares generally peaks in the microwave range. Its optically-thin, high-frequency component, above the spectral peak, is often used for diagnostics of the nonthermal electrons and the magnetic field in the radio source. Under favorable conditions, its low-frequency counterpart brings additional, complementary information about these parameters as well as thermal plasma diagnostics, either through gyrosynchrotron self-absorption, free-free absorption by the thermal plasma, or the suppression of emission through the so-called Razin effect. However, their effects on the low-frequency spectrum are often masked by spatial nonuniformity. To disentangle the various contributions to low-frequency gyrosynchrotron emission, a combination of spectral and imaging data is needed. To this end, we have investigated Owens Valley Solar Array (OVSA) multi-frequency images for 26 solar bursts observed jointly with Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) during the first half of 2002. For each, we examined dynamic spectra, time- and frequency-synthesis maps, RHESSI images with overlaid OVSA contours, and a few representative single-frequency snapshot OVSA images. We focus on the frequency dependence of microwave source sizes derived from the OVSA images and their effect on the low-frequency microwave spectral slope. We succeed in categorizing 18 analyzed events into several groups. Four events demonstrate clear evidence of being dominated by gyrosynchrotron self-absorption, with an inferred brightness temperature of $geq10^8$~K. The low-frequency spectra in the remaining events are affected to varying degree by Razin suppression. We find that many radio sources are rather large at low frequencies, which can have important implications for solar energetic particle production and escape.
141 - Lyndsay Fletcher 2010
The emphasis of observational and theoretical flare studies in the last decade or two has been on the flare corona, and attention has shifted substantially away from the flares chromospheric aspects. However, although the pre-flare energy is stored i n the corona, the radiative flare is primarily a chromospheric phenomenon, and its chromospheric emission presents a wealth of diagnostics for the thermal and non-thermal components of the flare. I will here review the chromospheric signatures of flare energy release and the problems thrown up by the application of these diagnostics in the context of the standard flare model. I will present some ideas about the transport of energy to the chromosphere by other means, and calculations of the electron acceleration that one might expect in one such model.
A white paper prepared for the Space Studies Board, National Academy of Sciences (USA), for its Decadal Survey of Solar and Space Physics (Heliophysics), reviewing and encouraging studies of flare physics in the chromosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا