ﻻ يوجد ملخص باللغة العربية
In an effort to understand the impact of nanostructuring on the magnetocaloric effect, we have grown and studied gadolinium in MgO/W(50 $textrm{AA}$)/[Gd(400 $textrm{AA}$)/W(50 $textrm{AA}$)]$_8$ heterostructures. The entropy change associated with the second order magnetic phase transition was determined from the isothermal magnetization for numerous temperatures and the appropriate Maxwell relation. The entropy change peaks at a temperature of 284 K with a value of approximately 3.4 J/kg-K for a 0-30 kOe field change; the full width at half max of the entropy change peak is about 70 K, which is significantly wider than that of bulk Gd under similar conditions. The relative cooling power of this nanoscale system is about 240 J/kg, somewhat lower than that of bulk Gd (410 J/kg). An iterative Kovel-Fisher method was used to determine the critical exponents governing the phase transition to be $beta=0.51$, and $gamma=1.75$. Along with a suppressed Curie temperature relative to the bulk, the fact that the convergent value of $gamma$ is that predicted by the 2-D Ising model may suggest that finite size effects play an important role in this system. Together, these observations suggest that nanostructuring may be a promising route to tailoring the magnetocaloric response of materials.
The Talbot effect has been known in optics since XIX century and found various technological applications. In this paper, we demonstrate with the help of micromagnetic simulations this self-imaging phenomenon for spin waves propagating in a thin ferr
The magnetocaloric effect in exchange-coupled synthetic-antiferromagnet multilayers is investigated experimentally and theoretically. We observe a temperature-controlled inversion of the effect, where the entropy increases on switching the individual
The direct magnetoelectric (ME) effect resulting from the polarization changes induced in a ferroelectric film by the application of a magnetic field to a ferromagnetic substrate is described using the nonlinear thermodynamic theory. It is shown that
The resonance frequency of membranes depends on the gas pressure due to the squeeze-film effect, induced by the compression of a thin gas film that is trapped underneath the resonator by the high frequency motion. This effect is particularly large in
We report on graphene-like mechanical exfoliation of thin films of titanium ditelluride and investigation of their electronic properties. The exfoliated crystalline TiTe2 films were used as the channel layers in the back-gated field-effect transistor