ﻻ يوجد ملخص باللغة العربية
In this paper we calculate the delay of the arrival times of visible photons on the focal plane of a telescope and its fluctuations as function of local atmospheric conditions (temperature, pressure, chemical composition, seeing values) and telescope diameter. The aim is to provide a model for delay and its fluctuations accurate to the picosecond level, as required by several very high time resolution astrophysical applications, such as comparison of radio and optical data on Giant Radio Bursts from optical pulsars, and Hanbury Brown Twiss Intensity Interferometry with Cerenkov light detectors. The results here presented have been calculated for the ESO telescopes in Chile (NTT, VLT, E-ELT), but the model can be easily applied to other sites and telescope diameters. Finally, we describe a theoretical mathematical model for calculating the Fried radius through the study of delay time fluctuations.
Results of 2005-2007 campaign of measurement of the optical turbulence vertical distribution above Mt. Maidanak are presented. Measurements are performed with the MASS (Multi-Aperture Scintillation Sensor) device which is widely used in similar studi
In recent years, instrumentation enabling pulsar observations with unprecedentedly high fractional bandwidth has been under development which can be used to substantially improve the precision of pulsar timing experiments. The traditional template-ma
The use of pulsars as astrophysical clocks for gravitational wave experiments demands the highest possible timing precision. Pulse times of arrival (TOAs) are limited by stochastic processes that occur in the pulsar itself, along the line of sight th
Using the concept of crossing state and the formalism of second quantization, we propose a prescription for computing the density of arrivals of particles for multiparticle states, both in the free and the interacting case. The densities thus compute
We model ideal arrival-time measurements for free quantum particles and for particles subject to an external interaction by means of a narrow and weak absorbing potential. This approach is related to the operational approach of measuring the first ph