ﻻ يوجد ملخص باللغة العربية
High-mass microquasars consist of a massive star and a compact object, the latter producing jets that will interact with the stellar wind. The evolution of the jets, and ultimately their radiative outcome, could depend strongly on the inhomogeneity of the wind, which calls for a detailed study. The hydrodynamics of the interaction between a jet and a clumpy wind is studied, focusing on the global wind and single clump-jet interplay. We have performed, using the code textit{Ratpenat}, three-dimensional numerical simulations of a clumpy wind interacting with a mildly relativistic jet, and of individual clumps penetrating into a jet. For typical wind and jet velocities, filling factors of about > 0.1 are already enough for the wind to be considered as clumpy. An inhomogeneous wind makes the jet more unstable when crossing the system. Kinetic luminosities of the order 1.e37 erg/s allow the jet to reach the borders of a compact binary with an O star, as in the smooth wind case, although with a substantially higher degree of disruption. When able to enter into the jet, clumps are compressed and heated during a time of about their size divided by the sound speed in the shocked clump. Then, clumps quickly disrupt, mass-loading and slowing down the jet. We conclude that moderate wind clumpiness makes already a strong difference with the homogeneous wind case, enhancing jet disruption, mass-loading, bending, and likely energy dissipation in the form of emission. All this can have observational consequences at high-energies and also in the large scale radio jets.
In this paper we present steady-state RMHD simulations that include a mass-load term to study the process of jet deceleration. The mass-load mimics the injection of a proton-electron plasma from stellar winds within the host galaxy into initially pai
The origin of Galactic cosmic rays remains a matter of debate, but supernova remnants are commonly considered to be the main place where high-energy cosmic rays are accelerated. Nevertheless, current models predict cosmic-ray spectra that do not matc
The properties of relativistic jets, their interaction with the ambient environment, and particle acceleration due to kinetic instabilities are studied self-consistently with Particle-in-Cell simulations. An important key issue is how a toroidal magn
We investigate the interplay between jets from Active Galactic Nuclei (AGNs) and the surrounding InterStellar Medium (ISM) through full 3D, high resolution, Adaptive Mesh Refinement simulations performed with the FLASH code. We follow the jet- ISM sy
We present Athena++ grid-based, hydrodynamic simulations of accretion onto Sagittarius A* via the stellar winds of the $sim 30$ Wolf-Rayet stars within the central parsec of the galactic center. These simulations span $sim$ 4 orders of magnitude in r