ﻻ يوجد ملخص باللغة العربية
Majarona fermions (MFs) were predicted more than seven decades ago but are yet to be identified [1]. Recently, much attention has been paid to search for MFs in condensed matter systems [2-10]. One of the seaching schemes is to create MF at the interface between an s-wave superconductor (SC) and a 3D topological insulator (TI) [11-13]. Experimentally, progresses have been achieved in the observations of a proximity-effect-induced supercurrent [14-16], a perfect Andreev reflection [17] and a conductance peak at the Fermi level [18]. However, further characterizations are still needed to clarify the nature of the SC-TI interface. In this Letter, we report on a strong proximity effect in Pb-Bi2Te3 hybrid structures, based on which Josephson junctions and superconducting quantum interference devices (SQUIDs) can be constructed. Josephson devices of this type would provide a test-bed for exploring novel phenomena such as MFs in the future.
The magnetization in a superconductor induced due to the inverse proximity effect is investigated in hybrid bilayers containing a superconductor and a ferromagnetic insulator or a strongly spin-polarized ferromagnetic metal. The study is performed wi
Semiconductor-based Josephson junctions provide a platform for studying proximity effect due to the possibility of tuning junction properties by gate voltage and large-scale fabrication of complex Josephson circuits. Recently Josephson junctions usin
We present measurements of the transport properties of hybrid structures consisting of a Kondo AuFe film and a superconducting Al film. The temperature dependence of the resistance indicates the existence of the superconducting proximity effect in th
Conventional spin-singlet superconductivity that deeply penetrates into ferromagnets is typically killed by the exchange interaction, which destroys the spin-singlet pairs. Under certain circumstances, however, superconductivity survives this interac
We study the superconducting proximity effect in a quantum wire with broken time-reversal (TR) symmetry connected to a conventional superconductor. We consider the situation of a strong TR-symmetry breaking, so that Cooper pairs entering the wire fro