ترغب بنشر مسار تعليمي؟ اضغط هنا

A single NV defect coupled to a nanomechanical oscillator

208   0   0.0 ( 0 )
 نشر من قبل Signe Seidelin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Olivier Arcizet




اسأل ChatGPT حول البحث

A single Nitrogen Vacancy (NV) center hosted in a diamond nanocrystal is positioned at the extremity of a SiC nanowire. This novel hybrid system couples the degrees of freedom of two radically different systems, i.e. a nanomechanical oscillator and a single quantum object. The dynamics of the nano-resonator is probed through time resolved nanocrystal fluorescence and photon correlation measurements, conveying the influence of a mechanical degree of freedom given to a non-classical photon emitter. Moreover, by immersing the system in a strong magnetic field gradient, we induce a magnetic coupling between the nanomechanical oscillator and the NV electronic spin, providing nanomotion readout through a single electronic spin. Spin-dependent forces inherent to this coupling scheme are essential in a variety of active cooling and entanglement protocols used in atomic physics, and should now be within the reach of nanomechanical hybrid systems.



قيم البحث

اقرأ أيضاً

We propose a current correlation spectrum approach to probe the quantum behaviors of a nanome-chanical resonator (NAMR). The NAMR is coupled to a double quantum dot (DQD), which acts as a quantum transducer and is further coupled to a quantum-point c ontact (QPC). By measuring the current correlation spectrum of the QPC, shifts in the DQD energy levels, which depend on the phonon occupation in the NAMR, are determined. Quantum behaviors of the NAMR could, thus, be observed. In particular, the cooling of the NAMR into the quantum regime could be examined. In addition, the effects of the coupling strength between the DQD and the NAMR on these energy shifts are studied. We also investigate the impacts on the current correlation spectrum of the QPC due to the backaction from the charge detector on the DQD.
A single-electron transistor incorporated as part of a nanomechanical resonator represents an extreme limit of electron-phonon coupling. While it allows for fast and sensitive electromechanical measurements, it also introduces backaction forces from electron tunnelling which randomly perturb the mechanical state. Despite the stochastic nature of this backaction, under conditions of strong coupling it is predicted to create self-sustaining coherent mechanical oscillations. Here, we verify this prediction using time-resolved measurements of a vibrating carbon nanotube transistor. This electromechanical oscillator has intriguing similarities with a laser. The single-electron transistor, pumped by an electrical bias, acts as a gain medium while the resonator acts as a phonon cavity. Despite the unconventional operating principle, which does not involve stimulated emission, we confirm that the output is coherent, and demonstrate other laser behaviour including injection locking and frequency narrowing through feedback.
We present an analysis of the dynamics of a nanomechanical resonator coupled to a superconducting single electron transistor (SSET) in the vicinity of the Josephson quasiparticle (JQP) and double Josephson quasiparticle (DJQP) resonances. For weak co upling and wide separation of dynamical timescales, we find that for either superconducting resonance the dynamics of the resonator is given by a Fokker-Planck equation, i.e., the SSET behaves effectively as an equilibrium heat bath, characterised by an effective temperature, which also damps the resonator and renormalizes its frequency. Depending on the gate and drain-source voltage bias points with respect to the superconducting resonance, the SSET can also give rise to an instability in the mechanical resonator marked by negative damping and temperature within the appropriate Fokker-Planck equation. Furthermore, sufficiently close to a resonance, we find that the Fokker-Planck description breaks down. We also point out that there is a close analogy between coupling a nanomechanical resonator to a SSET in the vicinity of the JQP resonance and Doppler cooling of atoms by means of lasers.
We demonstrate the effects of cavity quantum electrodynamics for a quantum dot coupled to a photonic molecule, consisting of a pair of coupled photonic crystal cavities. We show anti-crossing between the quantum dot and the two super-modes of the pho tonic molecule, signifying achievement of the strong coupling regime. From the anti-crossing data, we estimate the contributions of both mode-coupling and intrinsic detuning to the total detuning between the super-modes. Finally, we also show signatures of off-resonant cavity-cavity interaction in the photonic molecule.
Electron transport through a quantum dot coupled to superconducting leads shows a sharp conductance onset when a quantum dot orbital level crosses the superconducting coherence peak of one lead. We study superconducting single electron transistors in the weak coupling limit by connecting individual gold nanoparticles with aluminum junctions formed by electromigration. We show that the transport features close to the conductance onset threshold can be accurately described by the quantum dot levels hybridization with the leads, which is strongly enhanced by the divergent density of states at the superconducting gap edge. This highlights the importance of electron cotunneling effects in spectroscopies with superconducting probes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا