ﻻ يوجد ملخص باللغة العربية
We derive the Layzer-Irvine equation in the presence of a homogeneous (or quasi-homogeneous) dark energy component with an arbitrary equation of state. We extend the Layzer-Irvine equation to homogeneous and isotropic universes with an arbitrary number of dimensions and obtain the corresponding virial relation for sufficiently relaxed objects. We find analogous equations describing the dynamics of cosmic string loops and other p-branes of arbitrary dimensionality, discussing the corresponding relativistic and non-relativistic limits. Finally, we generalize the Layzer-Irvine equation to account for a non-minimal interaction between dark matter and dark energy, discussing its practical use as a signature of such an interaction.
Recent measurements of the Cosmic Microwave Anisotropies power spectra measured by the Planck satellite show a preference for a closed universe at more than $99 %$ Confidence Level. Such a scenario is however in disagreement with several low redshift
The immediate observational consequence of a non-trivial spatial topology of the Universe is that an observer could potentially detect multiple images of radiating sources. In particular, a non-trivial topology will generate pairs of correlated circl
We investigate the impacts of dark energy on constraining massive (active/sterile) neutrinos in interacting dark energy (IDE) models by using the current observations. We employ two typical IDE models, the interacting $w$ cold dark matter (I$w$CDM) m
Recently, the Planck collaboration has released the first cosmological papers providing the high resolution, full sky, maps of the cosmic microwave background (CMB) temperature anisotropies. It is crucial to understand that whether the accelerating e
We place observational constraints on two models within a class of scenarios featuring an elastic interaction between dark energy and dark matter that only produces momentum exchange up to first order in cosmological perturbations. The first one corr