Quantum and classical correlations in antiferromagnetic chains and the realization of Werner states with spins


الملخص بالإنكليزية

We investigate pairwise correlation properties of the ground state (GS) of finite antiferromagnetic (AFM) spin chains described by the Heisenberg model. The exchange coupling is restricted to nearest neighbor spins, and is constant $J_0$ except for a pair of neighboring sites, where the coupling $J_1$ may vary. We identify a rich variety of possible behaviors for different measures of pairwise (quantum and classical) correlations and entanglement in the GS of such spin chain. Varying a single coupling affects the degree of correlation between all spin pairs, indicating possible control over such correlations by tuning $J_1$. We also show that a class of two spin states constitutes exact spin realizations of Werner states (WS). Apart from the basic and theoretical aspects, this opens concrete alternatives for experimentally probing non-classical correlations in condensed matter systems, as well as for experimental realizations of a WS via a single tunable exchange coupling in a AFM chain.

تحميل البحث