ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect

123   0   0.0 ( 0 )
 نشر من قبل Ken-ichi Uchida
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin-Seebeck effect (SSE) in ferromagnetic metals and insulators has been investigated systematically by means of the inverse spin-Hall effect (ISHE) in paramagnetic metals. The SSE generates a spin voltage as a result of a temperature gradient in a ferromagnet, which injects a spin current into an attached paramagnetic metal. In the paramagnet, this spin current is converted into an electric field due to the ISHE, enabling the electric detection of the SSE. The observation of the SSE is performed in longitudinal and transverse configurations consisting of a ferromagnet/paramagnet hybrid structure, where thermally generated spin currents flowing parallel and perpendicular to the temperature gradient are detected, respectively. Our results explain the SSE in terms of a two-step process: (1) the temperature gradient creates a non-equilibrium state in the ferromagnet governed by both magnon and phonon propagations and (2) the non-equilibrium between magnons in the ferromagnet and electrons in the paramagnet at the contact interface leads to thermal spin pumping and the ISHE signal. The non-equilibrium state of metallic magnets (e.g. Ni81Fe19) under a temperature gradient is governed mainly by the phonons in the sample and the substrate, while in insulating magnets (e.g. Y3Fe5O12) both magnon and phonon propagations appear to be important. The phonon-mediated non-equilibrium that drives the thermal spin pumping is confirmed also by temperature-dependent measurements, giving rise to a giant enhancement of the SSE signals at low temperatures.



قيم البحث

اقرأ أيضاً

Sharp structures in magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y$_{3}$Fe$_{5}$O$_{12}$ (YIG) at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory th at includes the magnetoelastic coupling (MEC). The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.
114 - C. M. Jaworski , J. Yang , S. Mack 2011
Here we report on measurements of the spin-Seebeck effect of GaMnAs over an extended temperature range alongside the thermal conductivity, specific heat, magnetization, and thermoelectric power. The amplitude of the spin-Seebeck effect in GaMnAs scal es with the thermal conductivity of the GaAs substrate and the phonon-drag contribution to the thermoelectric power of the GaMnAs, demonstrating that phonons drive the spin redistribution. A phenomenological model involving phonon-magnon drag explains the spatial and temperature dependence of the measured spin distribution.
Investigating exotic magnetic materials with spintronic techniques is effective at advancing magnetism as well as spintronics. In this work, we report unusual field-induced suppression of the spin-Seebeck effect (SSE) in a quasi one-dimensional frust rated spin-$frac{1}{2}$ magnet LiCuVO$_4$, known to exhibit spin-nematic correlation in a wide range of external magnetic field $B$. The suppression takes place above $|B| > 2$ T in spite of the $B$-linear isothermal magnetization curves in the same $B$ range. The result can be attributed to the growth of the spin-nematic correlation while increasing $B$. The correlation stabilizes magnon pairs carrying spin-2, thereby suppressing the interfacial spin injection of SSE by preventing the spin-1 exchange between single magnons and conduction electrons at the interface. This interpretation is supported by integrating thermodynamic measurements and theoretical analysis on the SSE.
The longitudinal spin Seebeck effect refers to the generation of a spin current when heat flows across a normal metal/magnetic insulator interface. Until recently, most explanations of the spin Seebeck effect use the interfacial temperature differenc e as the conversion mechanism between heat and spin fluxes. However, recent theoretical and experimental works claim that a magnon spin current is generated in the bulk of a magnetic insulator even in the absence of an interface. This is the so-called intrinsic spin Seebeck effect. Here, by utilizing a non-local spin Seebeck geometry, we provide additional evidence that the total magnon spin current in the ferrimagnetic insulator yttrium iron garnet (YIG) actually contains two distinct terms: one proportional to the gradient in the magnon chemical potential (pure magnon spin diffusion), and a second proportional to the gradient in magnon temperature ($ abla T_m$). We observe two characteristic decay lengths for magnon spin currents in YIG with distinct temperature dependences: a temperature independent decay length of ~ 10 ${mu}$m consistent with earlier measurements of pure ($ abla T_m = 0$) magnon spin diffusion, and a longer decay length ranging from about 20 ${mu}$m around 250 K and exceeding 80 ${mu}$m at 10 K. The coupled spin-heat transport processes are modeled using a finite element method revealing that the longer range magnon spin current is attributable to the intrinsic spin Seebeck effect ($ abla T_m eq 0$), whose length scale increases at lower temperatures in agreement with our experimental data.
65 - L. Ma , H. A. Zhou , L. Wang 2015
Effective spin mixing conductance (ESMC) across the nonmagnetic metal (NM)/ferromagnet interface, spin Hall conductivity (SHC) and spin diffusion length (SDL) in the NM layer govern the functionality and performance of pure spin current devices with spin pumping technique. We show that all three parameters can be tuned significantly by the spin orbit coupling (SOC) strength of the NM layer in systems consisting of ferromagnetic insulating Y3Fe5O12 layer and metallic Pd1-xPtx layer. Surprisingly, the ESMC is observed to increase significantly with x changing from 0 to 1.0. The SHC in PdPt alloys, dominated by the intrinsic term, is enhanced notably with increasing x. Meanwhile, the SDL is found to decrease when Pd atoms are replaced by heavier Pt atoms, validating the SOC induced spin flip scattering model in polyvalent PdPt alloys. The capabilities of both spin current generation and spin charge conversion are largely heightened via the SOC. These findings highlight the multifold tuning effects of the SOC in developing the new generation of spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا