ترغب بنشر مسار تعليمي؟ اضغط هنا

A success story: 3C 454.3 in the gamma-ray energy band

102   0   0.0 ( 0 )
 نشر من قبل Stefano Vercellone
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Vercellone




اسأل ChatGPT حول البحث

Since 2007, the blazar 3C 454.3 has become the most active and the brightest gamma-ray source of the sky, deserving the nickname of Crazy Diamond. The short-term variability in the gamma-ray energy band and the extremely high peak fluxes reached during intense flaring episodes make 3C 454.3 one of the best targets to investigate the blazar jet properties. We review almost four years of observational properties of this remarkable source, discussing both short- and long-term multi-wavelength campaigns, with particular emphasis on the recent flaring episode which occurred on 2010 November 20, when 3C 454.3 reached on a daily time-scale a gamma-ray flux (E>100 MeV) higher than 6.5E-5 ph/cm2/s, about six times the flux of the brightest gamma-ray steady source, the Vela Pulsar.



قيم البحث

اقرأ أيضاً

136 - S. Vercellone 2012
3C 454.3 is the most variable and intense extragalactic gamma-ray blazar detected by AGILE and Fermi during the last 4 years. This remarkable source shows extreme flux variability (about a fact or of 20) on a time-scale of 24-48 hours, as well as rep eated flares on a time-scale of more than a year. The dynamic range, from the quiescence up to the most intense gamma-ray super-flare, is of about two orders of magnitude. We present the gamma-ray properties of 3C 454.3, comparing both the characteristics of flares at different levels and their multi-wavelength behavior. Moreover, an interpretation of both the long- and short-term properties of 3C 454.3 is reviewed, with particular emphasis on the two gamma-ray super-flares observed in 2009 and 2010, when 3C 454.3 became the brightest source of the whole gamma-ray sky.
We present the gamma-ray data of the extraordinary flaring activity above 100 MeV from the flat spectrum radio quasar 3C 454.3 detected by AGILE during the month of December 2009. 3C 454.3, that has been among the most active blazars of the FSRQ type since 2007, was detected in the gamma-ray range with a progressively rising flux since November 10, 2009. The gamma-ray flux reached a value comparable with that of the Vela pulsar on December 2, 2009. Remarkably, between December 2 and 3, 2009 the source more than doubled its gamma-ray emission and became the brightest gamma-ray source in the sky with a peak flux of F_{gamma,p} = (2000 pm 400) x 10^-8 ph cm^-2 s^-1 for a 1-day integration above 100 MeV. The gamma-ray intensity decreased in the following days with the source flux remaining at large values near F simeq (1000 pm 200) x 10^-8 ph cm^-2 s^-1 for more than a week. This exceptional gamma-ray flare dissipated among the largest ever detected intrinsic radiated power in gamma-rays above 100 MeV (L_{gamma, source, peak} simeq 3 x 10^46 erg s^-1, for a relativistic Doppler factor of {delta} simeq 30). The total isotropic irradiated energy of the month-long episode in the range 100 MeV - 3 GeV is E_{gamma,iso} simeq 10^56 erg. We report the intensity and spectral evolution of the gamma-ray emission across the flaring episode. We briefly discuss the important theoretical implications of our detection.
In May - July 2014, the flat spectrum radio quasar 3C 454.3 exhibited strong flaring behaviour. Observations with the Large Area Telescope detector on-board the Fermi Gamma-ray Space Telescope captured the $gamma$-ray flux at energies 0.1 $leq E_{gam ma}leq$ 300 GeV increasing fivefold during this period, with two distinct peaks in emission. The $gamma$-ray emission is analysed in detail, in order to study the emission characteristics and put constraints on the location of the emission region. We explore variability in the spectral shape of 3C 454.3, search for evidence of a spectral cutoff, quantify the significance of VHE emission and investigate whether or not an energy-dependence of the emitting electron cooling exists. $gamma$-ray intrinsic doubling timescales as small as $tau_{int} = 0.68$ $pm$ 0.01 h at a significance of > 5$sigma$ are found, providing evidence of a compact emission region. Significant $E_{gamma, emitted}geq$ 35 GeV and $E_{gamma, emitted}geq$ 50 GeV emission is also observed. The location of the emission region can be constrained to $rgeq1.3$ $times$ $R_{BLR}^{out}$, a location outside the broad-line region. The spectral variation of 3C 454.3 also suggests that these flares may be originating further downstream of the supermassive black hole than the emission before and after the flares.
We analyze the multifrequency behavior of the quasar 3C 454.3 during three prominent gamma-ray outbursts: 2009 Autumn, 2010 Spring, and 2010 Autumn. The data reveal a repeating pattern, including a triple flare structure, in the properties of each ga mma-ray outburst, which implies similar mechanism(s) and location for all three events. The multi-frequency behavior indicates that the lower frequency events are co-spatial with the gamma-ray outbursts, although the gamma-ray emission varies on the shortest timescales. We determine that the variability from UV to IR wavelengths during an outburst results from a single synchrotron component whose properties do not change significantly over the different outbursts. Despite a general increase in the degree of optical linear polarization during an outburst, the polarization drops significantly at the peak of the gamma-ray event, which suggests that both shocks and turbulent processes are involved. We detect two disturbances (knots) with superluminal apparent speeds in the parsec-scale jet associated with the outbursts in 2009 Autumn and 2010 Autumn. The kinematic properties of the knots can explain the difference in amplitudes of the gamma-ray events, while their millimeter-wave polarization is related to the optical polarization during the outbursts. We interpret the multi-frequency behavior within models involving either a system of standing conical shocks or magnetic reconnection events located in the parsec-scale millimeter-wave core of the jet. We argue that gamma-ray outbursts with variability timescales as short as ~ 3 hr can occur on parsec scales if flares take place in localized regions such as turbulent cells.
209 - S. Vercellone 2009
During the period July 2007 - January 2009, the AGILE satellite, together with several other space- and ground-based observatories monitored the activity of the flat-spectrum radio quasar 3C 454.3, yielding the longest multiwavelength coverage of thi s gamma-ray quasar so far. The source underwent an unprecedented period of very high activity above 100 MeV, a few times reaching gamma-ray flux levels on a day time scale higher than F=400 x 10^-8 ph cm^-2 s^-1, in conjunction with an extremely variable behavior in the optical R-band, even of the order of several tenth of magnitude in few hours, as shown by the GASP-WEBT light curves. We present the results of this long term multiwavelength monitoring campaign, with particular emphasis on the study of possible lags between the different wavebands, and the results of the modeling of simultaneous spectral energy distributions at different levels of activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا