ترغب بنشر مسار تعليمي؟ اضغط هنا

BCJ and KK Relations from BRST Symmetry and Supergravity Amplitudes

105   0   0.0 ( 0 )
 نشر من قبل Pietro Antonio Grassi
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use Pure Spinor string theory to construct suitable kinematical factors which explicitly satisfy the Kleiss-Kuijf (KK) relations. Using the formula conceived by Bern et al. and employed by us for 4- and 5-point amplitudes in a previous work, we are able to compute the 6-point supergravity amplitude from the corresponding SYM building blocks given by Mafra et al.. We derive the KK and Bern-Carrasco-Johansson (BCJ) identities from the BRST invariance and we discuss the relations between Bern et al. building blocks and those of Mafra et al..



قيم البحث

اقرأ أيضاً

In the AdS/CFT correspondence, bulk information appears to be encoded in the CFT in a redundant way. A local bulk field corresponds to many different non-local CFT operators (precursors). We recast this ambiguity in the language of BRST symmetry, and propose that in the large $N$ limit, the difference between two precursors is a BRST exact and ghost-free term. Using the BRST formalism and working in a simple model with global symmetries, we re-derive a precursor ambiguity appearing in earlier work. Finally, we show within this model that this BRST ambiguity has the right number of parameters to explain the freedom to localize precursors within the boundary of an entanglement wedge order by order in the large $N$ expansion.
We initiate a systematic study of the consequences of (super)conformal symmetry of massless scattering amplitudes. The classical symmetry is potentially broken at the quantum level by infrared and ultraviolet effects. We study its manifestations on t he finite hard part of the scattering process. The conformal Ward identities in momentum space are second-order differential equations, difficult to analyze. We prefer to study superconformal symmetry whose generators are first-order in the momenta. Working in a massless N=1 supersymmetric Wess-Zumino model, we derive on-shell superconformal Ward identities. They contain an anomaly due to collinear regions of loop momenta. It is given by an integral with one loop less than the original graph, with an extra integral over a collinear splitting parameter. We discuss the relation to the holomorphic anomaly that was previously studied in tree-level amplitudes and at the level of unitarity cuts. We derive and solve Ward identities for various scattering processes in the model. We classify the on-shell superamplitudes according to their Grassmann degree, in close analogy with the helicity classification of gluon amplitudes. We focus on MHV-like and NMHV-like amplitudes with up to six external particles, at one and two loops. Interestingly, the superconformal generator acting on the bosonic part of the amplitudes is Wittens twistor collinearity operator. We find that the first-order differential equations, together with physically motivated boundary conditions, uniquely fix the answer. All the cases considered give rise to uniform weight functions. Our most interesting example is a five-point non-planar hexa-box integral with an off-shell leg. It gives first indications on the function space needed for Higgs plus two jet production at next-to-next-to leading order.
110 - Agustin Sabio Vera 2020
This is a personal recollection of several results related to the study of the high energy limit of scattering amplitudes in gravitational theories. They would not have been possible without the encouragement and constant support from Lev Nikolaevich Lipatov.
Using the duality between color and kinematics, we construct two-loop four-point scattering amplitudes in $mathcal{N}=2$ super-Yang-Mills (SYM) theory coupled to $N_f$ fundamental hypermultiplets. Our results are valid in $Dle 6$ dimensions, where th e upper bound corresponds to six-dimensional chiral $mathcal{N}=(1,0)$ SYM theory. By exploiting a close connection with $mathcal{N}=4$ SYM theory - and, equivalently, six-dimensional $mathcal{N}=(1,1)$ SYM theory - we find compact integrands with four-dimensional external vectors in both the maximally-helicity-violating (MHV) and all-chiral-vector sectors. Via the double-copy construction corresponding $D$-dimensional half-maximal supergravity amplitudes with external graviton multiplets are obtained in the MHV and all-chiral sectors. Appropriately tuning $N_f$ enables us to consider both pure and matter-coupled supergravity, with arbitrary numbers of vector multiplets in $D=4$. As a bonus, we obtain the integrands of the genuinely six-dimensional supergravities with $mathcal{N}=(1,1)$ and $mathcal{N}=(2,0)$ supersymmetry. Finally, we extract the potential ultraviolet divergence of half-maximal supergravity in $D=5-2epsilon$ and show that it non-trivially cancels out as expected.
We present new formulas for one-loop ambitwistor-string correlators for gauge theories in any even dimension with arbitrary combinations of gauge bosons, fermions and scalars running in the loop. Our results are driven by new all-multiplicity express ions for tree-level two-fermion correlators in the RNS formalism that closely resemble the purely bosonic ones. After taking forward limits of tree-level correlators with an additional pair of fermions/bosons, one-loop correlators become combinations of Lorentz traces in vector and spinor representations. Identities between these two types of traces manifest all supersymmetry cancellations and the power counting of loop momentum. We also obtain parity-odd contributions from forward limits with chiral fermions. One-loop numerators satisfying the Bern-Carrasco-Johansson (BCJ) duality for diagrams with linearized propagators can be extracted from such correlators using the well-established tree-level techniques in Yang-Mills theory coupled to biadjoint scalars. Finally, we obtain streamlined expressions for BCJ numerators up to seven points using multiparticle fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا