ﻻ يوجد ملخص باللغة العربية
PKind is a novel parallel k-induction-based model checker of invariant properties for finite- or infinite-state Lustre programs. Its architecture, which is strictly message-based, is designed to minimize synchronization delays and easily accommodate the incorporation of incremental invariant generators to enhance basic k-induction. We describe PKinds functionality and main features, and present experimental evidence that PKind significantly speeds up the verification of safety properties and, due to incremental invariant generation, also considerably increases the number of provable ones.
Spatial and spatio-temporal model checking techniques have a wide range of application domains, among which large scale distributed systems and signal and image analysis. We explore a new domain, namely (semi-)automatic contouring in Medical Imaging,
We revisit two well-established verification techniques, $k$-induction and bounded model checking (BMC), in the more general setting of fixed point theory over complete lattices. Our main theoretical contribution is latticed $k$-induction, which (i)
This extended abstract reports on current progress of SMTCoq, a communication tool between the Coq proof assistant and external SAT and SMT solvers. Based on a checker for generic first-order certificates implemented and proved correct in Coq, SMTCoq
Knowledge-based programs provide an abstract level of description of protocols in which agent actions are related to their states of knowledge. The paper describes how epistemic model checking technology may be applied to discover and verify concrete
In this paper, we study new batch-dynamic algorithms for the $k$-clique counting problem, which are dynamic algorithms where the updates are batches of edge insertions and deletions. We study this problem in the parallel setting, where the goal is to