ترغب بنشر مسار تعليمي؟ اضغط هنا

Light Dark Matter and the Electroweak Phase Transition in the NMSSM

150   0   0.0 ( 0 )
 نشر من قبل Nausheen Shah
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Marcela Carena




اسأل ChatGPT حول البحث

We analyze the stability of the vacuum and the electroweak phase transition in the NMSSM close to the Peccei-Quinn symmetry limit. This limit contains light Dark Matter (DM) particles with a mass significantly smaller than the weak scale and also light CP-even and CP-odd Higgs bosons. Such light particles lead to a consistent relic density and facilitate a large spin-independent direct DM detection cross section, that may accommodate the recently reported signatures at the DAMA and CoGeNT experiments. Studying the one-loop effective potential at finite temperature, we show that when the lightest CP-even Higgs mass is of the order of a few GeV, the electroweak phase transition tends to become first order and strong. The inverse relationship between the direct-detection cross-section and the lightest CP-even Higgs mass implies that a cross-section of the order of 10$^{-41}$ cm$^2$ is correlated with a strong first order phase transition.



قيم البحث

اقرأ أيضاً

Very light right-handed (RH) sneutrinos in the Next-to-Minimal Supersymmetric Standard Model can be viable candidates for cold dark matter. We investigate the prospects for their direct detection, addressing their compatibility with the recent signal observed by the CoGeNT detector, and study the implications for Higgs phenomenology. We find that in order to reproduce the correct relic abundance very light RH sneutrinos can annihilate into either a fermion-antifermion pair, very light pseudoscalar Higgses or RH neutrinos. If the main annihilation channel is into fermions, we point out that RH sneutrinos could naturally account for the CoGeNT signal. Furthermore, the lightest Higgs has a very large invisible decay width, and in some cases the second-lightest Higgs too. On the other hand, if the RH sneutrino annihilates mostly into pseudoscalars or RH neutrinos the predictions for direct detection are below the current experimental sensitivities and satisfy the constraints set by CDMS and XENON. We also calculate the gamma ray flux from RH sneutrino annihilation in the Galactic centre, including as an interesting new possibility RH neutrinos in the final state. These are produced through a resonance with the Higgs and the resulting flux can exhibit a significant Breit-Wigner enhancement.
Recent data from cosmic ray experiments may be explained by a new GeV scale of physics. In addition the fine-tuning of supersymmetric models may be alleviated by new O(GeV) states into which the Higgs boson could decay. The presence of these new, lig ht states can affect early universe cosmology. We explore the consequences of a light (~ GeV) scalar on the electroweak phase transition. We find that trilinear interactions between the light state and the Higgs can allow a first order electroweak phase transition and a Higgs mass consistent with experimental bounds, which may allow electroweak baryogenesis to explain the cosmological baryon asymmetry. We show, within the context of a specific supersymmetric model, how the physics responsible for the first order phase transition may also be responsible for the recent cosmic ray excesses of PAMELA, FERMI etc. We consider the production of gravity waves from this transition and the possible detectability at LISA and BBO.
We examine the neutralino relic density in the presence of a light top squark, such as the one required for the realization of the electroweak baryogenesis mechanism, within the minimal supersymmetric standard model. We show that there are three clea rly distinguishable regions of parameter space, where the relic density is consistent with WMAP and other cosmological data. These regions are characterized by annihilation cross sections mediated by either light Higgs bosons, Z bosons, or by the co-annihilation with the lightest stop. Tevatron collider experiments can test the presence of the light stop in most of the parameter space. In the co-annihilation region, however, the mass difference between the light stop and the lightest neutralino varies between 15 and 30 GeV, presenting an interesting challenge for stop searches at hadron colliders. We present the prospects for direct detection of dark matter, which provides a complementary way of testing this scenario. We also derive the required structure of the high energy soft supersymmetry breaking mass parameters where the neutralino is a dark matter candidate and the stop spectrum is consistent with electroweak baryogenesis and the present bounds on the lightest Higgs mass.
Electroweak baryogenesis is an attractive mechanism to generate the baryon asymmetry of the Universe via a strong first order electroweak phase transition. We compare the phase transition patterns suggested by the vacuum structure at the critical tem peratures, at which local minima are degenerate, with those obtained from computing the probability for nucleation via tunneling through the barrier separating local minima. Heuristically, nucleation becomes difficult if the barrier between the local minima is too high, or if the distance (in field space) between the minima is too large. As an example of a model exhibiting such behavior, we study the Next-to-Minimal Supersymmetric Standard Model, whose scalar sector contains two SU(2) doublets and one gauge singlet. We find that the calculation of the nucleation probabilities prefers different regions of parameter space for a strong first order electroweak phase transition than the calculation based solely on the critical temperatures. Our results demonstrate that analyzing only the vacuum structure via the critical temperatures can provide a misleading picture of the phase transition patterns, and, in turn, of the parameter space suitable for electroweak baryogenesis.
We study classically scale invariant models in which the Standard Model Higgs mass term is replaced in the Lagrangian by a Higgs portal coupling to a complex scalar field of a dark sector. We focus on models that are weakly coupled with the quartic s calar couplings nearly vanishing at the Planck scale. The dark sector contains fermions and scalars charged under dark SU(2) x U(1) gauge interactions. Radiative breaking of the dark gauge group triggers electroweak symmetry breaking through the Higgs portal coupling. Requiring both a Higgs boson mass of 125.5 GeV and stability of the Higgs potential up to the Planck scale implies that the radiative breaking of the dark gauge group occurs at the TeV scale. We present a particular model which features a long-range abelian dark force. The dominant dark matter component is neutral dark fermions, with the correct thermal relic abundance, and in reach of future direct detection experiments. The model also has lighter stable dark fermions charged under the dark force, with observable effects on galactic-scale structure. Collider signatures include a dark sector scalar boson with mass < 250 GeV that decays through mixing with the Higgs boson, and can be detected at the LHC. The Higgs boson, as well as the new scalar, may have significant invisible decays into dark sector particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا