ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Role of spatial coherence in Goos-Hanchen and Imbert-Fedorov shifts [arXiv:0804.1895]

240   0   0.0 ( 0 )
 نشر من قبل Li-Gang Wang
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Li-Gang Wang




اسأل ChatGPT حول البحث

It is shown that the spatial Goos-Hanchen shift is greatly affected by spatial coherence. A typical example is given.



قيم البحث

اقرأ أيضاً

209 - Li-Gang Wang , Shi-Yao Zhu , 2013
This comment is to show that our simulation data, based on our theory and method in Ref. [J. Phys. B 41, 055401 (2008)], are also in agreement with the experimental data presented for $D_{p}-D_{s}$ in Ref. [Phys. Rev. Lett. textbf{109}, 213901 (2012) ]. We also demonstrate how to show the effect of spatial coherence on the GH shifts in this comment, therefore we disagree with the claims in Ref. [Phys. Rev. Lett. textbf{109}, 213901 (2012)].
60 - S. Goswami 2015
The spatial and the angular variants of the Goos-Hanchen (GH) and the Imbert-Federov (IF) beam shifts contribute in a complex interrelated way to the resultant beam shift in partial reflection at planar dielectric interfaces. Here, we show that the a ngular GH and the two variants of the IF effects can be decoupled, amplified and separately observed by weak value amplification and subsequent conversion of spatial$leftrightarrow$angular nature of the beam shifts using appropriate pre and post selection of polarization states. We experimentally demonstrate such decoupling and illustrate various other intriguing manifestations of weak measurements by employing optimized pre and post selections (based on the eigen polarization states of the shifts) elliptical and / or linear polarization basis. The demonstrated ability to amplify, controllably decouple or combine the beam shifts via weak measurements may prove to be valuable for understanding the different physical contributions of the effects and for their applications in sensing and precision metrology
184 - P.B. Phua , W.J. Lai 2007
We demonstrate, for the first time, a scheme that generates radially-polarized light using Goos-Hanchen shift of a cylindrically symmetric Total Internal Reflection. It allows ultra-broadband radial polarization conversion for wavelengths differing >1 micron.
We report the observation of the Goos-Hanchen effect in graphene via a weak value amplification scheme. We demonstrate that the amplified Goos-Hanchen shift in weak measurements is sensitive to the variation of graphene layers. Combining the Goos-Han chen effect with weak measurements may provide important applications in characterizing the parameters of graphene.
We theoretically predict a giant quantized Goos-H{a}nchen (GH) effect on the surface of graphene in quantum Hall regime. The giant quantized GH effect manifests itself as an angular shift whose quantized step reaches the order of mrad for light beams impinging on a graphene-on-substrate system. The quantized GH effect can be attributed to quantized Hall conductivity, which corresponds to the discrete Landau levels in quantum Hall regime. We find that the quantized step can be greatly enhanced for incident angles near the Brewster angle. Moreover, the Brewster angle is sensitive to the Hall conductivity, and therefore the quantized GH effect can be modulated by the Fermi energy and the external magnetic field. The giant quantized GH effect offers a convenient way to determine the quantized Hall conductivity and the discrete Landau levels by a direct optical measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا