ترغب بنشر مسار تعليمي؟ اضغط هنا

In-medium effects on $K^{+}$ and $K^{-}$ spectra in lighter systems

108   0   0.0 ( 0 )
 نشر من قبل Aman D. Sood
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim to explore the in-medium effects on the transverse momentum ($p_{T}$) spectra of $K^{+}$ and $K^{-}$ in lighter mass system $^{12}C+^{12}C$.



قيم البحث

اقرأ أيضاً

Total and reaction cross sections are derived self consistently from the attenuation cross sections measured in transmission experiments at the AGS for K^+ on Li^6, C, Si and Ca in the momentum range of 500-700 MeV/c by using a V_{opt}=t_{eff}(rho)rh o optical potential. Self consistency requires, for the KN in-medium t matrix, that Im t_{eff}(rho) increases linearly with the average nuclear density in excess of a threshold value of 0.088+-0.004 fm^-3. The density dependence of Re t_{eff}(rho) is studied phenomenologically, and also applying a relativistic mean field approach, by fitting the integral cross sections. The real part of the optical potential is found to be systematically less repulsive with increasing energy than expected from the free-space repulsive KN interaction. When the elastic scattering data for Li^6 and C at 715 MeV/c are included in the analysis, a tendency of Re V_{opt} to generate an attractive pocket at the nuclear surface is observed.
Self consistency in the analysis of transmission measurements for K^+ on several nuclei in the momentum range of 500-700 MeV/c is achieved with a t_{eff}(rho)rho potential and new results are derived for total cross sections. The imaginary part of th e t_{eff} amplitude is found to increase linearly with the average nuclear density in excess of a threshold value. This phenomenological density dependence of the K^+ nucleus optical potential also gives rise to good agreement with recent measurements of differential cross sections for elastic scattering of 715 MeV/c K^+ by Li^6 and C.
We investigate the K^- ^3He and K^+ K^- interactions in the reaction pd -> ^3He K^+ K^- near threshold and compare our model calculations with data from the MOMO experiment at COSY-Juelich. A large attractive effective K^- p amplitude would give a si gnificant K^- ^3He final-state interaction effect which is not supported by the experimental data. We also estimate upper limits for the a_0(980) and f_0(980) contributions to the produced K^+ K^- pairs.
We present the analysis of the inclusive $K^{0}$ production in p+p and p+Nb collisions measured with the HADES detector at a beam kinetic energy of 3.5 GeV. Data are compared to the GiBUU transport model. The data suggest the presence of a repulsive momentum-dependent kaon potential as predicted by the Chiral Perturbation Theory (ChPT). For the kaon at rest and at normal nuclear density, the ChPT potential amounts to $approx 35$ MeV. A detailed tuning of the kaon production cross sections implemented in the model has been carried out to reproduce the experimental data measured in p+p collisions. The uncertainties in the parameters of the model were examined with respect to the sensitivity of the experimental results from p+Nb collisions to the in-medium kaon potential.
The cross sections for the pp -> ppK+K- reaction were measured at three beam energies 2.65, 2.70, and 2.83 GeV at the COSY-ANKE facility. The shape of the K+K- spectrum at low invariant masses largely reflects the importance of Kbar{K} final state in teractions. It is shown that these data can be understood in terms of an elastic K+K- rescattering plus a contribution coming from the production of a K0bar{K}0 pair followed by a charge-exchange rescattering. Though the data are not yet sufficient to establish the size of the cusp at the K0bar{K}0 threshold, the low mass behaviour suggests that isospin-zero production is dominant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا