ترغب بنشر مسار تعليمي؟ اضغط هنا

A multi-wavelength study of the radio source G296.7-0.9: confirmation as a Galactic supernova remnant

113   0   0.0 ( 0 )
 نشر من قبل William Robbins II
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a multi-wavelength study of the radio source G296.7-0.9. This source has a bilateral radio morphology, a radio spectral index of -0.5 +/- 0.1, sparse patches of linear polarisation, and thermal X-rays with a bright arc near the radio boundary. Considering these characteristics, we conclude that G296.7-0.9 is a supernova remnant (SNR). The age and morphology of the SNR in the context of its environment suggest that the source is co-located with an HII region, and that portions of the shock front have broken out into a lower density medium. We see no evidence for a neutron star or pulsar wind nebula associated with SNR G296.7-0.9.



قيم البحث

اقرأ أيضاً

136 - M.Stupar , Q. A.Parker , D.J. Frew 2018
A combination of archival multi-frequency radio observations with narrow-band HAlpha optical imagery and new confirmatory optical spectroscopy have shown that candidate supernova remnant G6.31+0.54 can now be confirmed as part of a Galactic supernova remnant (SNR). It has non-thermal emission, an optical emission line spectrum displaying shock excitation and standard SNR line ratios, fine filamentary structures in HAlpha typical of optical remnants and closely overlapping radio and optical footprints. An X-ray ROSAT source 1RXS J175752.1-231105 was also found that matches the radio and optical emission though a definite association is not proven. Nevertheless, taken together, all these observed properties point to a clear SNR identification for this source. We provide a rough estimate for the kinematic distance to G6.31+0.54 of ~4.5kpc. The detected optical filaments are some ~10arcminutes in extent (or about 13 pc at the assumed distance). However, as only a partial arcuate structure of the SNR can be seen (and not a full shell) the full angular extent of the SNR is unclear. Hence the physical extent of the observed partial shell is also difficult to estimate. If we assume an approximately circular shell then a conservative fit to the optical arc shaped filaments gives an angular diameter of ~20 arcminutes corresponding to a physical diameter of ~26 pc that shows this to be an evolved remnant.
We present X-ray and radio observations of the new Galactic supernova remnant (SNR) G306.3-0.9, recently discovered by Swift. Chandra imaging reveals a complex morphology, dominated by a bright shock. The X-ray spectrum is broadly consistent with a y oung SNR in the Sedov phase, implying an age of 2500 yr for a distance of 8 kpc, plausibly identifying this as one of the 20 youngest Galactic SNRs. Australia Telescope Compact Array (ATCA) imaging reveals a prominent ridge of radio emission that correlates with the X-ray emission. We find a flux density of ~ 160 mJy at 1 GHz, which is the lowest radio flux recorded for a Galactic SNR to date. The remnant is also detected at 24microns, indicating the presence of irradiated warm dust. The data reveal no compelling evidence for the presence of a compact stellar remnant.
Due to its centrally bright X-ray morphology and limb brightened radio profile, MSH 11-61A (G290.1-0.8) is classified as a mixed morphology supernova remnant (SNR). H$textsc{i}$ and CO observations determined that the SNR is interacting with molecula r clouds found toward the north and southwest regions of the remnant. In this paper we report on the detection of $gamma$-ray emission coincident with MSH 11-61A, using 70 months of data from the Large Area Telescope on board the textit{Fermi Gamma-ray Space Telescope}. To investigate the origin of this emission, we perform broadband modelling of its non-thermal emission considering both leptonic and hadronic cases and concluding that the $gamma$-ray emission is most likely hadronic in nature. Additionally we present our analysis of a 111 ks archival textit{Suzaku} observation of this remnant. Our investigation shows that the X-ray emission from MSH 11-61A arises from shock-heated ejecta with the bulk of the X-ray emission arising from a recombining plasma, while the emission towards the east arises from an ionising plasma.
SXP 1062 is a Be X-ray binary located in the Small Magellanic Cloud. It hosts a long-period X-ray pulsar and is likely associated with the supernova remnant MCSNR J0127-7332. In this work we present a multi-wavelength view on SXP 1062 in different lu minosity regimes. We consider monitoring campaigns in optical (OGLE survey) and X-ray (SWIFT telescope). During these campaigns a tight coincidence of X-ray and optical outbursts is observed. We interpret this as typical Type I outbursts as often detected in Be X-ray binaries at periastron passage of the neutron star. To study different X-ray luminosity regimes in depth, during the source quiescence we observed it with XMM-Newton while Chandra observations followed an X-ray outburst. Nearly simultaneously with Chandra observations in X-rays, in optical the RSS/SALT telescope obtained spectra of SXP 1062. On the basis of our multi-wavelength campaign we propose a simple scenario where the disc of the Be star is observed face-on, while the orbit of the neutron star is inclined with respect to the disc. According to the model of quasi-spherical settling accretion our estimation of the magnetic field of the pulsar in SXP 1062 does not require an extremely strong magnetic field at the present time.
129 - Xianghua Li 2020
We present a radio polarization study of the supernova remnant CTB 80 based on images at 1420 MHz from the Canadian Galactic plane survey, at 2695 MHz from the Effelsberg survey of the Galactic plane, and at 4800 MHz from the Sino-German 6cm polariza tion survey of the Galactic plane. We obtained a rotation measure (RM) map using polarization angles at 2695 MHz and 4800 MHz as the polarization percentages are similar at these two frequencies. RM exhibits a transition from positive values to negative values along one of the shells hosting the pulsar PSR B1951+32 and its pulsar wind nebula. The reason for the change of sign remains unclear. We identified a partial shell structure, which is bright in polarized intensity but weak in total intensity. This structure could be part of CTB 80 or part of a new supernova remnant unrelated to CTB 80.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا