ترغب بنشر مسار تعليمي؟ اضغط هنا

Thin-film superconducting resonator tunable to the ground-state hyperfine splitting of $^{87}$Rb

150   0   0.0 ( 0 )
 نشر من قبل Zaeill Kim
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a thin-film superconducting Nb microwave resonator, tunable to within 0.3 ppm of the hyperfine splitting of $^{87}$Rb at $f_{Rb}=6.834683$ GHz. We coarsely tuned the resonator using electron-beam lithography, decreasing the resonance frequency from 6.8637 GHz to 6.8278 GHz. For emph{in situ} fine tuning at 15 mK, the resonator inductance was varied using a piezoelectric stage to move a superconducting pin above the resonator. We found a maximum frequency shift of about 8.7 kHz per 60-nm piezoelectric step and a tuning range of 18 MHz.



قيم البحث

اقرأ أيضاً

We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms ^{87}Rb, ^{133}Cs, ^{211}Fr and alkali-metal-like ions ^{135}Ba^+, ^{225}Ra^+, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.
We demonstrate coherent control of both the rotational and hyperfine state of ultracold, chemically stable $^{87}$Rb$^{133}$Cs molecules with external microwave fields. We create a sample of ~2000 molecules in the lowest hyperfine level of the rovibr onic ground state N = 0. We measure the transition frequencies to 8 different hyperfine levels of the N = 1 state at two magnetic fields ~23 G apart. We determine accurate values of rotational and hyperfine coupling constants that agree well with previous calculations. We observe Rabi oscillations on each transition, allowing complete population transfer to a selected hyperfine level of N = 1. Subsequent application of a second microwave pulse allows transfer of molecules back to a different hyperfine level of N = 0.
We present the results of an experimental and theoretical study of the electronically excited $tripletex$ state of $^{87}$Rb$_2$ molecules. The vibrational energies are measured for deeply bound states from the bottom up to $v=15$ using laser spectro scopy of ultracold Rb$_2$ Feshbach molecules. The spectrum of each vibrational state is dominated by a 47,GHz splitting into a $cog$ and $clg$ component caused mainly by a strong second order spin-orbit interaction. Our spectroscopy fully resolves the rotational, hyperfine, and Zeeman structure of the spectrum. We are able to describe to first order this structure using a simplified effective Hamiltonian.
We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a b eam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.
We present an efficient and robust source of photons at the $^{87}$Rb D1-line (795 nm) with a narrow bandwidth of $delta=226(1)$ MHz. The source is based on non-degenerate, cavity-enhanced spontaneous parametric down-conversion in a monolithic optica l parametric oscillator far below threshold. The setup allows for efficient coupling to single mode fibers. A heralding efficiency of $eta_{mathrm{heralded}}=45(5)$ % is achieved, and the uncorrected number of detected photon pairs is $3.8 times 10^{3}/(textrm{s mW})$. For pair generation rates up to $5times 10^{5}/$s, the source emits heralded single photons with a normalized, heralded, second-order correlation function $g^{(2)}_{c}<0.01$. The source is intrinsically stable due to the monolithic configuration. Frequency drifts are on the order of $delta/20$ per hour without active feedback on the emission frequency. We achieved fine-tuning of the source frequency within a range of $ > 2$ GHz by applying mechanical strain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا