We develop a theory of thermal transport of weakly interacting electrons in quantum wires. Unlike higher-dimensional systems, a one-dimensional electron gas requires three-particle collisions for energy relaxation. The fastest relaxation is provided by the intrabranch scattering of comoving electrons which establishes a partially equilibrated form of the distribution function. The thermal conductance is governed by the slower interbranch processes which enable energy exchange between counterpropagating particles. We derive an analytic expression for the thermal conductance of interacting electrons valid for arbitrary relation between the wire length and electron thermalization length. We find that in sufficiently long wires the interaction-induced correction to the thermal conductance saturates to an interaction-independent value.