ترغب بنشر مسار تعليمي؟ اضغط هنا

A Chern-Weil Isomorphism for the Equivariant Brauer Group

219   0   0.0 ( 0 )
 نشر من قبل Peter Bouwknegt
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we construct a Chern-Weil isomorphism for the equivariant Brauer group of R^n-actions on a principal torus bundle, where the target for this isomorphism is a dimensionally reduced Cech cohomology group. From this point of view, the usual forgetful functor takes the form of a connecting homomorphism in a long exact sequence in dimensionally reduced cohomology.



قيم البحث

اقرأ أيضاً

In this paper we outline a recent construction of a Chern-Weil isomorphism for the equivariant Brauer group of $mathbb R^n$ actions on a principal torus bundle, where the target for this isomorphism is a dimensionally reduced vCech cohomology group. Using this latter group, we demonstrate how to extend the induced algebra construction to algebras with a non-trivial bundle as their spectrum.
276 - Jeroen Dello , Yinhuo Zhang 2014
Let $(H, R)$ be a finite dimensional quasitriangular Hopf algebra over a field $k$, and $_Hmathcal{M}$ the representation category of $H$. In this paper, we study the braided autoequivalences of the Drinfeld center $^H_Hmathcal{YD}$ trivializable on $_Hmathcal{M}$. We establish a group isomorphism between the group of those autoequivalences and the group of quantum commutative bi-Galois objects of the transmutation braided Hopf algebra $_RH$. We then apply this isomorphism to obtain a categorical interpretation of the exact sequence of the equivariant Brauer group $mathrm{BM}(k, H,R)$ in [18]. To this aim, we have to develop the braided bi-Galois theory initiated by Schauenburg in [14,15], which generalizes the Hopf bi-Galois theory over usual Hopf algebras to the one over braided Hopf algebras in a braided monoidal category.
83 - Gabor Szabo 2016
We show an equivariant Kirchberg-Phillips-type absorption theorem for pointwise outer actions of discrete amenable groups on Kirchberg algebras with respect to natural model actions on the Cuntz algebras $mathcal{O}_infty$ and $mathcal{O}_2$. This ge neralizes results known for finite groups and poly-$mathbb{Z}$ groups. The model actions are shown to be determined, up to strong cocycle conjugacy, by natural abstract properties, which are verified for some examples of actions arising from tensorial shifts. We also show the following homotopy rigidity result, which may be understood as a precursor to a general Kirchberg-Phillips-type classification theory: If two outer actions of an amenable group on a unital Kirchberg algebra are equivariantly homotopy equivalent, then they are conjugate. This marks the first C*-dynamical classification result up to cocycle conjugacy that is applicable to actions of all amenable groups.
We study super parallel transport around super loops in a quotient stack, and show that this geometry constructs a global version of the equivariant Chern character.
We prove that the isomorphism relation for separable C$^*$-algebras, and also the relations of complete and $n$-isometry for operator spaces and systems, are Borel reducible to the orbit equivalence relation of a Polish group action on a standard Borel space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا