ﻻ يوجد ملخص باللغة العربية
Bipolar spherical harmonics (BiPoSHs) provide a general formalism for quantifying departures in the cosmic microwave background (CMB) from statistical isotropy (SI) and from Gaussianity. However, prior work has focused only on BiPoSHs with even parity. Here we show that there is another set of BiPoSHs with odd parity, and we explore their cosmological applications. We describe systematic artifacts in a CMB map that could be sought by measurement of these odd-parity BiPoSH modes. These BiPoSH modes may also be produced cosmologically through lensing by gravitational waves (GWs), among other sources. We derive expressions for the BiPoSH modes induced by the weak lensing of both scalar and tensor perturbations. We then investigate the possibility of detecting parity-breaking physics, such as chiral GWs, by cross-correlating opposite parity BiPoSH modes with multipole moments of the CMB polarization. We find that the expected signal-to-noise of such a detection is modest.
Cosmological observations are promising ways to improve our understanding of neutrino mass properties. The upper bound on the sum of masses is given by the cosmic microwave background and large scale structure. These measurements are all parity-even,
Spherical Harmonics, $Y_ell^m(theta,phi)$, are derived and presented (in a Table) for half-odd-integer values of $ell$ and $m$. These functions are eigenfunctions of $L^2$ and $L_z$ written as differential operators in the spherical-polar angles, $th
We compare the statistics of parity even and odd multipoles of the cosmic microwave background (CMB) sky from PLANCK full mission temperature measurements. An excess power in odd multipoles compared to even multipoles has previously been found on lar
The derivation of spherical harmonics is the same in nearly every quantum mechanics textbook and classroom. It is found to be difficult to follow, hard to understand, and challenging to reproduce by most students. In this work, we show how one can de
Photometry of short-period planetary systems allows astronomers to monitor exoplanets, their host stars, and their mutual interactions. In addition to the transits of a planet in front of its star and the eclipses of the planet by its star, researche